29 research outputs found

    Highlights from ASCO-GI 2021 from EORTC Gastrointestinal tract cancer group.

    Get PDF
    Last year the field of immunotherapy was finally introduced to GI oncology, with several changes in clinical practice such as advanced hepatocellular carcinoma or metastatic colorectal MSI-H. At the virtual ASCO-GI symposium 2021, several large trial results have been reported, some leading to a change of practice. Furthermore, during ASCO-GI 2021, results from early phase trials have been presented, some with potential important implications for future treatments. We provide here an overview of these important results and their integration into routine clinical practice

    GNE Is Involved in the Early Development of Skeletal and Cardiac Muscle

    Get PDF
    UDP-N-acetylglucosamine 2 epimerase/N-acetylmannosamime kinase (GNE) is a bifunctional enzyme which catalyzes the two key sequential steps in the biosynthetic pathway of sialic acid, the most abundant terminal monosaccharide on glycoconjugates of eukaryotic cells. GNE knock out (GNE KO) mice are embryonically lethal at day E8.5. Although the role of GNE in the sialic pathway has been well established as well as the importance of sialylation in many diverse biological pathways, less is known about the involvement of GNE in muscle development. To address this issue we have studied the role of GNE during in vitro embryogenesis by comparing the developmental profile in culture of embryonic stem cells (ES) from wild type and from GNE KO E3.5 mice embryos, during 45 days. Neuronal cells appeared rarely in GNE KO ES cultures and did not reach an advanced differentiated stage. Although primary cardiac cells appeared at the same time in both normal and GNE KO ES cultures, GNE KO cardiac cells degraded very soon and their beating capacity decayed rapidly. Furthermore very rare skeletal muscle committed cells were detected in the GNE KO ES cultures at any stage of differentiation, as assessed by analysis of the expression of either Pax7, MyoD and MyHC markers. Beyond the supporting evidence that GNE plays an important role in neuronal cell and brain development, these results show that GNE is strongly involved in cardiac tissue and skeletal muscle early survival and organization. These findings could open new avenues in the understanding of muscle function mechanisms in health and in disease

    Direct Visualization of Protease Action on Collagen Triple Helical Structure

    Get PDF
    Enzymatic processing of extracellular matrix (ECM) macromolecules by matrix metalloproteases (MMPs) is crucial in mediating physiological and pathological cell processes. However, the molecular mechanisms leading to effective physiological enzyme-ECM interactions remain elusive. Only scant information is available on the mode by which matrix proteases degrade ECM substrates. An example is the enzymatic degradation of triple helical collagen II fragments, generated by the collagenase MMP-8 cleavage, during the course of acute inflammatory conditions by gelatinase B/MMP-9. As is the case for many other matrix proteases, it is not clear how MMP-9 recognizes, binds and digests collagen in this important physiological process. We used single molecule imaging to directly visualize this protease during its interaction with collagen fragments. We show that the initial binding is mediated by the diffusion of the protease along the ordered helix on the collagen ¾ fragment, with preferential binding of the collagen tail. As the reaction progressed and prior to collagen degradation, gelatin-like morphologies resulting from the denaturation of the triple helical collagen were observed. Remarkably, this activity was independent of enzyme proteolysis and was accompanied by significant conformational changes of the working protease. Here we provide the first direct visualization of highly complex mechanisms of macromolecular interactions governing the enzymatic processing of ECM substrates by physiological protease

    Continued Participation of Israeli Adolescents in Online Sports Programs during the COVID-19 Pandemic Is Associated with Higher Resilience

    No full text
    Background: Coronavirus disease 2019 (COVID-19) has forced adolescents to adapt rapidly to a new reality of physical and social distancing, while introducing a range of new sources of stress and adversity. Our primary aim was to study the relationship between adolescents’ resilience and their participation in online sports programs during the COVID-19 pandemic lockdown period. Our secondary aims were to assess the associations between the organized sports programs’ determinants and resilience. Methods: Online surveys designed to examine resilience, lifestyle, psychosocial health and characteristics of the organized sports programs were administered to 473 adolescents who were enrolled in organized sports programs before the COVID-19 pandemic. Results: Adolescents who continued to participate in online structured programs during the lockdown period were significantly more resilient and physically active, had higher self-related health, satisfaction with life, and ability to cope during the pandemic, compared to those who did not participate. Relationships with the adult instructor and levels of physical activity were the most important factors of the programs that were associated with resilience. Conclusions: Participation of adolescents in sports programs is an important resource associated with higher levels of resilience. Youth programs should continue their activities during globally challenging times, such as the COVID-19 pandemic

    Expression and localization of pannexin-1 and CALHM1 in porcine bladder and their involvement in modulating ATP release

    No full text
    ATP release from urinary bladder is vital for afferent signaling. The aims of this study were to localize CALHM1 and pannexin-1 expression and to determine their involvement in mediating ATP release in the bladder. Gene expression by PCR and immunohistochemistry were performed in the porcine bladder. CALHM1 and pannexin-1 mediated ATP release in response to hypotonic solution (0.45% NaCl) induced stretch and extracellular Ca2+ depletion ([Ca2+]0) was measured in isolated urothelial, suburothelial and detrusor muscle cells. CALHM1 and pannexin-1 mRNA and immunoreactivity were detected in urothelial, suburothelial and detrusor muscle layers with a highest expression on urothelium. Hypotonic stretch caused a 2.7-fold rise in ATP release from all three cell populations (P \u3c 0.01), which was significantly attenuated by the pannexin-1 inhibitor,10Panx1, and by CALHM1 antibody. Brefeldin A, a vesicular transport inhibitor, and ruthenium red, a non-selective CALHM1 channel blocker, also significantly inhibited stretch-mediated ATP release from urothelial cells. [Ca2+]0 caused a marked but transient elevation of extracellular ATP level in all three cell populations. CALHM1 antibody and ruthenium red inhibited [Ca2+]0-induced ATP release from urothelial cells, but their effects on suburothelial and detrusor cells was insignificant. 10Panx1 showed no significant inhibition of [Ca2+]0-induced ATP release in any types of cells. The results presented here provide compelling evidence that pannexin-1 and CALHM1 that are densely expressed in the porcine bladder function as ATP release channels in response to bladder distension. Modulation of extracellular Ca2+ may also regulate ATP release in the porcine bladder through voltage gated CALHM1 ion channels

    Sequential therapy or patients with primary refractory acute myeloid leukemia: a historical prospective analysis of the German and Israeli experience

    No full text
    Primary refractory acute myeloid leukemia (AML) is associated with a dismal prognosis. The FLAMSA-reduced intensity conditioning protocol (total body irradiation or treosulfan-based) has been described as an effective approach in patients with refractory leukemia undergoing allogeneic hematopoietic cell transplantation. A modified protocol (without amsacrine) has also recently been used. We retrospectively analyzed the transplantation characteristics and outcomes of all consecutive patients between the years 2003 and 2017 (n=51) diagnosed with primary refractory AML who underwent transplantation at the University of Cologne and the Tel Aviv Medical Center. Median age was 54 years and median follow up was 37 months. Median time to neutrophil and platelet engraftment was 13 (range, 8-19) and 13 (range, 7-30) days, respectively. None of the patients had primary graft failure. Incidences of grade 2-4 and grade 3-4 acute graft-versus-host disease (GvHD), overall and moderate-severe chronic GvHD were 50% (95%CI: 41-67%), 12% (95%CI: 3-25%), 61% (95%CI: 47-72%), and 42% (95%CI: 34-51%), respectively. Anti-thymocyte globulin administration was associated with lower incidence of acute GvHD (FIR: 0.327; P=0.02). Non-relapse mortality at three months and three years were 6% and 16%, respectively. Relapse incidences were 6% and 29%, respectively. Overall survival rates at three months, three and five years were 90%, 61%, and 53%, respectively. Chronic GvHD disease was associated with a decreased mortality rate (HR 0.397; P=0.045). We conclude that sequential therapy in patients with primary refractory acute myeloid leukemia is safe and provides a remarkable anti-leukemic effect with durable survival and should be considered for every patient with primary refractory disease
    corecore