7 research outputs found

    Synthesis and In Vitro Evaluation of a Set of 6-Deoxy-6-thio- carboranyl D-Glucoconjugates Shed Light on the Substrate Specificity of the GLUT1 Transporter

    Get PDF
    Glucose-and sodium-dependent glucose transporters (GLUTs and SGLTs) play vital roles in human biology. Of the 14 GLUTs and 12 SGLTs, the GLUT1 transporter has gained t h e most widespread recognition because GLUT1 is overexpressed in several cancers and is a clinically valid therapeutic target. We have been pursuing a GLUT1-targeting approach in boron neutron capture therapy (BNCT). Here, we report on surprising findings encountered w i t h a set of 6-deoxy-6-thio-carbora n y l D-glucoconjugates. In more detail, we show that even subtle structural changes in t h e carborane cluster, and the linker, may significantly reduce the delivery capacity of GLUT1-based boron carriers. In addition to providing new insights on the substrate specificity of this important transporter, we reach a fresh perspec t i v e on the boundaries within which a GLUT1-targeting approach in BNCT can be further refined.Peer reviewe

    Exploring the Biochemical Foundations of a Successful GLUT1-Targeting Strategy to BNCT: Chemical Synthesis and In Vitro Evaluation of the Entire Positional Isomer Library of ortho-Carboranylmethyl-Bearing Glucoconjugates

    Get PDF
    Boron neutron capture therapy (BNCT) is a noninvasive binary therapeutic modality applicable to the treatment of cancers. While BNCT offers a tumor-targeting selectivity that is difficult to match by other means, the last obstacles preventing the full harness of this potential come in the form of the suboptimal boron delivery strategies presently used in the clinics. To address these challenges, we have developed delivery agents that target the glucose transporter GLUT1. Here, we present the chemical synthesis of a number of ortho-carboranylmethyl-substituted glucoconjugates and the biological assessment of all positional isomers. Altogether, the study provides protocols for the synthesis and structural characterization of such glucoconjugates and insights into their essential properties, for example, cytotoxicity, GLUT1-affinity, metabolism, and boron delivery capacity. In addition to solidifying the biochemical foundations of a successful GLUT1-targeting approach to BNCT, we identify the most promising modification sites in d-glucose, which are critical in order to further develop this strategy toward clinical use.Peer reviewe

    Addressing the Biochemical Foundations of a Glucose-Based "Trojan Horse"-Strategy to Boron Neutron Capture Therapy: From Chemical Synthesis to In Vitro Assessment

    Get PDF
    Boron neutron capture therapy (BNCT) for cancer is on the rise worldwide due to recent developments of in-hospital neutron accelerators which are expected to revolutionize patient treatments. There is an urgent need for improved boron delivery agents, and herein we have focused on studying the biochemical foundations upon which a successful GLUT1-targeting strategy to BNCT could be based. By combining synthesis and molecular modeling with affinity and cytotoxicity studies, we unravel the mechanisms behind the considerable potential of appropriately designed glucoconjugates as boron delivery agents for BNCT. In addition to addressing the biochemical premises of the approach in detail, we report on a hit glucoconjugate which displays good cytocompatibility, aqueous solubility, high transporter affinity, and, crucially, an exceptional boron delivery capacity in the in vitro assessment thereby pointing toward the significant potential embedded in this approach

    Halogenation at the Phenylalanine Residue of Monomethyl Auristatin F Leads to a Favorable cis/trans Equilibrium and Retained Cytotoxicity

    Get PDF
    Halogenation can be utilized for the purposes of labeling and molecular imaging, providing a means to, e.g., follow drug distribution in an organism through positron emission tomography (PET) or study the molecular recognition events unfolding by nuclear magnetic resonance (NMR) spectroscopy. For cancer therapeutics, where often highly toxic substances are employed, it is of importance to be able to track the distribution of the drugs and their metabolites in order to ensure minimal side effects. Labeling should ideally have a negligible disruptive effect on the efficacy of a given drug. Using a combination of NMR spectroscopy and cytotoxicity assays, we identify a site susceptible to halogenation in monomethyl auristatin F (MMAF), a widely used cytotoxic agent in the antibody-drug conjugate (ADC) family of cancer drugs, and study the effects of fluorination and chlorination on the physiological solution structure of the auristatins and their cytotoxicity. We find that the cytotoxicity of the parent drug is retained, while the conformational equilibrium is shifted significantly toward the biologically active trans isomer, simultaneously decreasing the concentration of the inactive and potentially disruptive cis isomer by up to 50%. Our results may serve as a base for the future assembly of a multifunctional toolkit for the assessment of linker technologies and exploring bystander effects from the warhead perspective in auristatin-derived ADCs.Peer reviewe

    Sweet Battle of the Epimers-Continued Exploration of Monosaccharide-Derived Delivery Agents for Boron Neutron Capture Therapy

    No full text
    Boron neutron capture therapy (BNCT) is a cancer therapy in which boron delivery agents play a crucial role. In theory, delivery agents with high tumor targeting capabilities can lead to selective eradication of tumor cells without causing harmful side effects. We have been working on a GLUT1-targeting strategy to BNCT for a number of years and found multiple promising hit compounds which outperform the clinically employed boron delivery agents in vitro. Herein, we continue our work in the field by further diversification of the carbohydrate scaffold in order to map the optimal stereochemistry of the carbohydrate core. In the sweet battle of the epimers, carborane-bearing D-galactose, D-mannose, and D-allose are synthesized and subjected to in vitro profiling studies-with earlier work on D-glucose serving as the reference. We find that all of the monosaccharide delivery agents display a significantly improved boron delivery capacity over the delivery agents approved for clinical use in vitro, thus providing a sound foundation for advancing toward in vivo preclinical assessment studies.Peer reviewe

    Addressing the Biochemical Foundations of a Glucose-Based "Trojan Horse"-Strategy to Boron Neutron Capture Therapy : From Chemical Synthesis to In Vitro Assessment

    Get PDF
    Boron neutron capture therapy (BNCT) for cancer is on the rise worldwide due to recent developments of in-hospital neutron accelerators which are expected to revolutionize patient treatments. There is an urgent need for improved boron delivery agents, and herein we have focused on studying the biochemical foundations upon which a successful GLUT1-targeting strategy to BNCT could be based. By combining synthesis and molecular modeling with affinity and cytotoxicity studies, we unravel the mechanisms behind the considerable potential of appropriately designed glucoconjugates as boron delivery agents for BNCT. In addition to addressing the biochemical premises of the approach in detail, we report on a hit glucoconjugate which displays good cytocompatibility, aqueous solubility, high transporter affinity, and, crucially, an exceptional boron delivery capacity in the in vitro assessment thereby pointing toward the significant potential embedded in this approach.Peer reviewe
    corecore