20 research outputs found

    Splice-Modulating Oligonucleotide QR-110 Restores CEP290 mRNA and Function in Human c.2991+1655A>G LCA10 Models.

    Get PDF
    Leber congenital amaurosis type 10 (LCA10) is a severe inherited retinal dystrophy associated with mutations in CEP290. The deep intronic c.2991+1655A>G mutation in CEP290 is the most common mutation in LCA10 individuals and represents an ideal target for oligonucleotide therapeutics. Here, a panel of antisense oligonucleotides was designed to correct the splicing defect associated with the mutation and screened for efficacy and safety. This identified QR-110 as the best-performing molecule. QR-110 restored wild-type CEP290 mRNA and protein expression levels in CEP290 c.2991+1655A>G homozygous and compound heterozygous LCA10 primary fibroblasts. Furthermore, in homozygous three-dimensional iPSC-derived retinal organoids, QR-110 showed a dose-dependent restoration of mRNA and protein function, as measured by percentage and length of photoreceptor cilia, without off-target effects. Localization studies in wild-type mice and rabbits showed that QR-110 readily reached all retinal layers, with an estimated half-life of 58 days. It was well tolerated following intravitreal injection in monkeys. In conclusion, the pharmacodynamic, pharmacokinetic, and safety properties make QR-110 a promising candidate for treating LCA10, and clinical development is currently ongoing.This study was funded by ProQR. iPSC work in the Cheetham lab is also supported by the Wellcome Trust, Fight for Sight, RP Fighting Blindness, and Moorfields Eye Charity

    Different angioregulatory activity of monovalent galectin-9 isoforms

    No full text
    Galectin-9 consists of two peptide-linked carbohydrate recognition domains (CRDs), but alternative splicing and proteolytic processing can give rise to multiple galectin-9 isoforms. Some of these consist of a single CRD and can exert different functions in cell biology. Here, we explored the role of these galectin-9 isoforms in endothelial cell function and angiogenesis. For this, we compared the effects of the two separate CRDs (Gal-9N and Gal-9C) with the tandem repeat galectin-9M on endothelial cell proliferation, migration, sprouting and tube formation in vitro as well as on angiogenesis in vivo using the chicken chorioallantoic membrane (CAM) assay. Galectin-9 isoforms significantly affected proliferation in quiescent endothelial cells and migration in activated endothelial cells. Interestingly, both monovalent gal-9 CRDs displayed opposite effects compared to gal-9M on proliferation and migration. Sprouting was significantly inhibited by gal-9C, while all isoforms appeared to stimulate tube formation. Angiogenesis in vivo was hampered by all three isoforms with predominant effects on vessel length. In general, the isoforms induced only subtle concentration-dependent effects in vitro as well as in vivo. Collectively, the effects of different galectin-9 isoforms in endothelial cell biology depend on the cellular activation status. While opposing effects can be observed on a cellular level in vitro, all galectin-9 isoforms hamper angiogenesis in vivo. This warrants further investigation of the regulatory mechanisms that underlie the diverging roles of galectin-9 isoforms in endothelial cell biology since this could provide therapeutic opportunities

    Different angioregulatory activity of monovalent galectin-9 isoforms

    No full text
    Galectin-9 consists of two peptide-linked carbohydrate recognition domains (CRDs), but alternative splicing and proteolytic processing can give rise to multiple galectin-9 isoforms. Some of these consist of a single CRD and can exert different functions in cell biology. Here, we explored the role of these galectin-9 isoforms in endothelial cell function and angiogenesis. For this, we compared the effects of the two separate CRDs (Gal-9N and Gal-9C) with the tandem repeat galectin-9M on endothelial cell proliferation, migration, sprouting and tube formation in vitro as well as on angiogenesis in vivo using the chicken chorioallantoic membrane (CAM) assay. Galectin-9 isoforms significantly affected proliferation in quiescent endothelial cells and migration in activated endothelial cells. Interestingly, both monovalent gal-9 CRDs displayed opposite effects compared to gal-9M on proliferation and migration. Sprouting was significantly inhibited by gal-9C, while all isoforms appeared to stimulate tube formation. Angiogenesis in vivo was hampered by all three isoforms with predominant effects on vessel length. In general, the isoforms induced only subtle concentration-dependent effects in vitro as well as in vivo. Collectively, the effects of different galectin-9 isoforms in endothelial cell biology depend on the cellular activation status. While opposing effects can be observed on a cellular level in vitro, all galectin-9 isoforms hamper angiogenesis in vivo. This warrants further investigation of the regulatory mechanisms that underlie the diverging roles of galectin-9 isoforms in endothelial cell biology since this could provide therapeutic opportunities

    Galectin mRNA expression profile in tumor tissues obtained from early stage non-small cell lung cancer patients (n- = 87) (A).

    No full text
    <p>The inset shows the expression of the three galectin-9 splice variants. (B) Images of immunohistochemical staining of the galectins with detectable mRNA expression in NSCLC <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0107988#pone.0107988-Uhlen1" target="_blank">[27]</a>. (C) Western blot analysis of galectin-9 isoform expression in NSCLC tumor tissue from 5 different patients. Three bands at expected molecular weights of galectin-9FL, galectin-9Δ5 and galectin-9Δ5/6 were observed at varying intensities.</p

    Kaplan-Meier estimates of median OS and DFS in early stage NSCLC patients with galectin expression below or above the median level.

    No full text
    <p>HR = hazard ratio; CI = confidence interval.</p><p>Kaplan-Meier estimates of median OS and DFS in early stage NSCLC patients with galectin expression below or above the median level.</p
    corecore