241 research outputs found

    Endogenous opioid analgesia in peripheral tissues and the clinical implications for pain control

    Get PDF
    Opioid receptors are widely expressed in the central and peripheral nervous system as well as in numerous nonneuronal tissues. Both animal models and human clinical data support the involvement of peripheral opioid receptors in analgesia, particularly in inflammation where both opioid receptor expression and efficacy are increased. Immune cells have been shown to contain numerous opioid peptides such as β-endorphin (END), met-enkephalin (ENK), and dynorphin-A (DYN), although the predominant opioid peptide involved in immune-cell mediated antinociception is thought to be END. These opioid-containing immune cells migrate to inflamed tissues during a complex process of recruitment by chemokines, adhesion, and extravasation. In these tissues, opioid peptide is released from the immune cells upon stimulation with corticotrophin-releasing factor (CRF), noradrenaline, and interleukin 1β (IL-1β), and the immune cells return to the local lymph node depleted of peptide. Consistent with this model, systemic immunosuppression may lead to impaired endogenous analgesia as competent immune cells are essential to achieve release of endogenous opioid peptides within inflamed tissue. A further level of complexity is added by the observation that exogenous opioids may impair immune cell function, although there is some evidence to suggest that endogenous opioid peptides do not share this immunosuppressive effect. Improving our understanding of endogenous opioid mechanisms will provide valuable insight towards the development of novel treatments for pain with improved side effect profiles

    Therapeutic opportunities for targeting cold pain pathways

    Get PDF
    Cold pain is a frequent symptom in neuropathic pain. Compared to other pain modalities, such as heat pain, the mechanisms behind physiological and pathological cold pain remain elusive. Moreover, it is becoming increasingly evident that cold pain pharmacology differs between various neuropathic pain conditions, making mechanism-directed treatment based on an understanding of the underlying pathophysiological mechanisms imperative to achieving clinical success. Here we review the processes of physiological and abnormal cold sensing, the pharmacology of cold nociception, cold hyperalgesia and cold allodynia, and provide an overview of cold pain syndromes and their current and potential treatments

    The μ opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway

    Get PDF
    BACKGROUND: The vanilloid receptor 1 (TRPV1) is critical in the development of inflammatory hyperalgesia. Several receptors including G-protein coupled prostaglandin receptors have been reported to functionally interact with the TRPV1 through a cAMP-dependent protein kinase A (PKA) pathway to potentiate TRPV1-mediated capsaicin responses. Such regulation may have significance in inflammatory pain. However, few functional receptor interactions that inhibit PKA-mediated potentiation of TRPV1 responses have been described. RESULTS: In the present studies we investigated the hypothesis that the μ opioid receptor (MOP) agonist morphine can modulate forskolin-potentiated capsaicin responses through a cAMP-dependent PKA pathway. HEK293 cells were stably transfected with TRPV1 and MOP, and calcium (Ca(2+)) responses to injection of the TRPV1 agonist capsaicin were monitored in Fluo-3-loaded cells. Pre-treatment with morphine did not inhibit unpotentiated capsaicin-induced Ca(2+ )responses but significantly altered capsaicin responses potentiated by forskolin. TRPV1-mediated Ca(2+ )responses potentiated by the direct PKA activator 8-Br-cAMP and the PKC activator Phorbol-12-myristate-13-acetatewere not modulated by morphine. Immunohistochemical studies confirmed that the TRPV1 and MOP are co-expressed on cultured Dorsal Root Ganglion neurones, pointing towards the existence of a functional relationship between the G-protein coupled MOP and nociceptive TRPV1. CONCLUSION: The results presented here indicate that the opioid receptor agonist morphine acts via inhibition of adenylate cyclase to inhibit PKA-potentiated TRPV1 responses. Targeting of peripheral opioid receptors may therefore have therapeutic potential as an intervention to prevent potentiation of TRPV1 responses through the PKA pathway in inflammation

    Evaluation of known and novel inhibitors of Orai1-mediated store operated Ca2+ entry in MDA-MB-231 breast cancer cells using a Fluorescence Imaging Plate Reader assay

    Get PDF
    The Orai1 Ca2+ permeable ion channel is an important component of store operated Ca2+ entry (SOCE) in cells. It's over-expression in basal molecular subtype breast cancers has been linked with poor prognosis, making it a potential target for drug development. We pharmacologically characterised a number of reported inhibitors of SOCE in MDA-MB-231 breast cancer cells using a convenient Fluorescence Imaging Plate Reader (FLIPR) assay, and show that the rank order of their potencies in this assay is the same as those reported in a wide range of published assays. The assay was also used in a screening project seeking novel inhibitors. Following a broad literature survey of classes of calcium channel inhibitors we used simplified ligand structures to query the ZINC on-line database, and following two iterations of refinement selected a novel Orai1-selective dichlorophenyltriazole hit compound. Analogues of this were synthesized and evaluated in the FLIPR assay to develop structure-activity relationships (SAR) for the three domains of the hit; triazole (head), dichlorophenyl (body) and substituted phenyl (tail). For this series, the results suggested the need for a lipophilic tail domain and an out-of-plane twist between the body and tail domains. (C) 2016 Elsevier Ltd. All rights reserved

    The Allosteric Activation of α7 nAChR by α-Conotoxin MrIC Is Modified by Mutations at the Vestibular Site

    Get PDF
    α-conotoxins are 13–19 amino acid toxin peptides that bind various nicotinic acetylcholine receptor (nAChR) subtypes. α-conotoxin Mr1.7c (MrIC) is a 17 amino acid peptide that targets α7 nAChR. Although MrIC has no activating effect on α7 nAChR when applied by itself, it evokes a large response when co-applied with the type II positive allosteric modulator PNU-120596, which potentiates the α7 nAChR response by recovering it from a desensitized state. A lack of standalone activity, despite activation upon co-application with a positive allosteric modulator, was previously observed for molecules that bind to an extracellular domain allosteric activation (AA) site at the vestibule of the receptor. We hypothesized that MrIC may activate α7 nAChR allosterically through this site. We ran voltage-clamp electrophysiology experiments and in silico peptide docking calculations in order to gather evidence in support of α7 nAChR activation by MrIC through the AA site. The experiments with the wild-type α7 nAChR supported an allosteric mode of action, which was confirmed by the significantly increased MrIC + PNU-120596 responses of three α7 nAChR AA site mutants that were designed in silico to improve MrIC binding. Overall, our results shed light on the allosteric activation of α7 nAChR by MrIC and suggest the involvement of the AA site

    The pharmacology of voltage-gated sodium channel activators

    Get PDF
    Toxins and venom components that target voltage-gated sodium (Na) channels have evolved numerous times due to the importance of this class of ion channels in the normal physiological function of peripheral and central neurons as well as cardiac and skeletal muscle. Na channel activators in particular have been isolated from the venom of spiders, wasps, snakes, scorpions, cone snails and sea anemone and are also produced by plants, bacteria and algae. These compounds have provided key insight into the molecular structure, function and pathophysiological roles of Na channels and are important tools due to their at times exquisite subtype-selectivity. We review the pharmacology of Na channel activators with particular emphasis on mammalian isoforms and discuss putative applications for these compounds. This article is part of the Special Issue entitled ‘Venom-derived Peptides as Pharmacological Tools.

    Characterisation of Nav types endogenously expressed in human SH-SY5Y neuroblastoma cells

    Get PDF
    The human neuroblastoma cell line SH-SY5Y is a potentially useful model for the identification and characterisation of Na(v) modulators, but little is known about the pharmacology of their endogenously expressed Na(v)s. The aim of this study was to determine the expression of endogenous Na(v) α and β subunits in SH-SY5Y cells using PCR and immunohistochemical approaches, and pharmacologically characterise the Na(v) isoforms endogenously expressed in this cell line using electrophysiological and fluorescence approaches. SH-SY5Y human neuroblastoma cells were found to endogenously express several Na(v) isoforms including Na(v)1.2 and Na(v)1.7. Activation of endogenously expressed Na(v)s with veratridine or the scorpion toxin OD1 caused membrane depolarisation and subsequent Ca(2+) influx through voltage-gated L- and N-type calcium channels, allowing Na(v) activation to be detected with membrane potential and fluorescent Ca(2) dyes. μ-Conotoxin TIIIA and ProTxII identified Na(v)1.2 and Na(v)1.7 as the major contributors of this response. The Na(v)1.7-selective scorpion toxin OD1 in combination with veratridine produced a Na(v)1.7-selective response, confirming that endogenously expressed human Na(v)1.7 in SH-SY5Y cells is functional and can be synergistically activated, providing a new assay format for ligand screening.NHMRC Program Grant: 056992

    ω-Conotoxin GVIA mimetics that bind and inhibit neuronal Cav2.2 ion channels

    Get PDF
    The neuronal voltage-gated N-type calcium channel (Cav2.2) is a validated target for the treatment of neuropathic pain. A small library of anthranilamide-derived ω-Conotoxin GVIA mimetics bearing the diphenylmethylpiperazine moiety were prepared and tested using three experimental measures of calcium channel blockade. These consisted of a 125I-ω-conotoxin GVIA displacement assay, a fluorescence-based calcium response assay with SH-SY5Y neuroblastoma cells, and a whole-cell patch clamp electrophysiology assay with HEK293 cells stably expressing human Cav2.2 channels. A subset of compounds were active in all three assays. This is the first time that compounds designed to be mimics of ω-conotoxin GVIA and found to be active in the 125I-ω-conotoxin GVIA displacement assay have also been shown to block functional ion channels in a dose-dependent manner

    The mediating role of innovation in the relationship between market orientation and university performance in Pakistan

    Get PDF
    Universities globally are going through a paradigm shift with a need to become more innovatively market-oriented to handle the issue of growing competition for funding, as well as attracting/retaining the international/local competent students and academicians. However, there appears to be a dearth of research on how such state of affairs could be addressed, particularly in the emerging economies like Pakistan. In the light of resource-based theory (RBT), as well as organizational-learning theory (OLT), literature suggests that market-orientation (MO) and innovation are to be the desirable unique resources, as well as the guiding philosophies, to enable universities for a more competitive performance. Hence, this study investigated how resources like marketorientation (MO), and innovation, can influence university performance (UP). The study also tested empirically the potential mediating effect of innovation on the MOUP relationship. In addition, how the dimensions of MO influenced the innovation and university performance (UP) were also tested empirically in the universities of Pakistan. Results of the PLS path modelling (with 369 respondents from the target public-sector universities) firstly confirmed significant effect of the “universal construct of MO” and two of its dimensions “the advising and mentoring, as well as the intelligencegeneration and response” on UP. However, one dimension of MO, which is the administration-leadership, was not significantly supported to directly influence the UP. Secondly, the study confirmed that there were significant direct effects of the “universal construct of MO”, as well as all of its dimensions, on innovation. Thirdly, the study also found that there was a significant effect of innovation on UP. Furthermore, the bootstrapping results found significant mediation of innovation between the MO-UP relationship. Hence, the results show that UP can be directly enhanced through MO and innovation. Even the use of innovation as a mediator can further strengthen the MO-UP relationship. Based on the findings, the study offers theoretical and practical implications, followed by its limitations and directions, for future research

    Analgesic treatment of ciguatoxin-induced cold allodynia

    Get PDF
    Ciguatera, the most common form of nonbacterial ichthyosarcotoxism, is caused by consumption of fish that have bioaccumulated the polyether sodium channel activator ciguatoxin. The neurological symptoms of ciguatera include distressing, often persistent sensory disturbances such as paraesthesias and the pathognomonic symptom of cold allodynia. We show that intracutaneous administration of ciguatoxin in humans elicits a pronounced axon-reflex flare and replicates cold allodynia. To identify compounds able to inhibit ciguatoxin-induced Na-v responses, we developed a novel in vitro ciguatoxin assay using the human neuroblastoma cell line SH-SY5Y. Pharmacological characterisation of this assay demonstrated a major contribution of Na(v)1.2 and Na(v)1.3, but not Na(v)1.7, to ciguatoxin-induced Ca2+ responses. Clinically available Nav inhibitors, as well as the K(v)7 agonist flupirtine, inhibited tetrodotoxin-sensitive ciguatoxin-evoked responses. To establish their in vivo efficacy, we used a novel animal model of ciguatoxin-induced cold allodynia. However, differences in the efficacy of these compounds to reverse ciguatoxin-induced cold allodynia did not correlate with their potency to inhibit ciguatoxin-induced responses in SH-SY5Y cells or at heterologously expressed Nav1.3, Na(v)1.6, Na(v)1.7, or Na(v)1.8, indicating cold allodynia might be more complex than simple activation of Na-v channels. These findings highlight the need for suitable animal models to guide the empiric choice of analgesics, and suggest that lamotrigine and flupirtine could be potentially useful for the treatment of ciguatera. (C) 2013 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved
    corecore