54 research outputs found

    Mouse Plasmacytoid Cells: Long-lived Cells, Heterogeneous in Surface Phenotype and Function, that Differentiate Into CD8+ Dendritic Cells Only after Microbial Stimulus

    Get PDF
    The CD45RAhiCD11cint plasmacytoid predendritic cells (p-preDCs) of mouse lymphoid organs, when stimulated in culture with CpG or influenza virus, produce large amounts of type I interferons and transform without division into CD8+CD205− DCs. P-preDCs express CIRE, the murine equivalent of DC-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN). P-preDCs are divisible by CD4 expression into two subgroups differing in turnover rate and in response to Staphylococcus aureus. The kinetics of bromodeoxyuridine labeling and the results of transfer to normal recipient mice indicate that CD4− p-preDCs are the immediate precursors of CD4+ p-preDCs. Similar experiments indicate that p-preDCs are normally long lived and are not the precursors of the short-lived steady-state conventional DCs. However, in line with the culture studies on transfer to influenza virus-stimulated mice the p-preDCs transform into CD8+CD205− DCs, distinct from conventional CD8+CD205+ DCs. Hence as well as activating preexistant DCs, microbial infection induces a wave of production of a new DC subtype. The functional implications of this shift in the DC network remain to be determined

    Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells

    Get PDF
    Interferon-producing killer dendritic cells (IKDCs) have been described as possessing the lytic potential of NK cells and the antigen-presenting capacity of dendritic cells (DCs). In this study, we examine the lytic function and antigen-presenting capacity of mouse spleen IKDCs, including those found in DC preparations. IKDCs efficiently killed NK cell targets, without requiring additional activation stimuli. However, in our hands, when exposed to protein antigen or to MHC class II peptide, IKDCs induced little or no T cell proliferation relative to conventional DCs or plasmacytoid DCs, either before or after activation with CpG, or in several disease models. Certain developmental features indicated that IKDCs resembled NK cells more than DCs. IKDCs, like NK cells, did not express the transcription factor PU.1 and were absent from recombinase activating gene-2–null, common γ-chain–null (Rag2−/−Il2rg−/−) mice. When cultured with IL-15 and -18, IKDCs proliferated extensively, like NK cells. Under these conditions, a proportion of expanded IKDCs and NK cells expressed high levels of surface MHC class II. However, even such MHC class II+ IKDCs and NK cells induced poor T cell proliferative responses compared with DCs. Thus, IKDCs resemble NK cells functionally, and neither cell type could be induced to be effective antigen-presenting cells

    Evidence that multiple defects in murine DC-SIGN inhibit a functional interaction with pathogens

    Get PDF
    AbstractCertain viruses, bacteria, fungi and parasites target dendritic cells through the interaction with the cellular attachment factor DC-SIGN, making this C-type lectin an attractive target for therapeutic intervention. Studies on DC-SIGN function would be greatly aided by the establishment of a mouse model, however, it is unclear if the murine (m) homologue of human (h) DC-SIGN also binds to pathogens. Here, we investigated the interaction of mDC-SIGN, also termed CIRE, with the Ebolavirus glycoprotein (EBOV-GP), a ligand of hDC-SIGN. We found that mDC-SIGN neither binds EBOV-GP nor enhances infection by reporterviruses pseudotyped with EBOV-GP. Analysis of chimeras between mDC-SIGN and hDC-SIGN provided evidence that determinants in the carbohydrate recognition domain and in the neck domain of mDC-SIGN inhibit a functional interaction with EBOV-GP. Moreover, mDC-SIGN was found be monomeric, suggesting that lack of multimerization, which is believed to be required for efficient pathogen recognition by hDC-SIGN, might be one factor that prevents binding of mDC-SIGN to EBOV-GP. Our results suggest that mDC-SIGN on murine dendritic cells is not an adequate model for pathogen interactions with hDC-SIGN
    corecore