28 research outputs found

    Use of fluorescence lifetime imaging microscopy (FLIM) as a timer of cell cycle S phase

    Get PDF
    Incorporation of thymidine analogues in replicating DNA, coupled with antibody and fluorophore staining, allows analysis of cell proliferation, but is currently limited to monolayer cultures, fixed cells and end-point assays. We describe a simple microscopy imaging method for live real-time analysis of cell proliferation, S phase progression over several division cycles, effects of anti-proliferative drugs and other applications. It is based on the prominent (~ 1.7-fold) quenching of fluorescence lifetime of a common cell-permeable nuclear stain, Hoechst 33342 upon the incorporation of 5-bromo-2’-deoxyuridine (BrdU) in genomic DNA and detection by fluorescence lifetime imaging microscopy (FLIM). We show that quantitative and accurate FLIM technique allows high-content, multi-parametric dynamic analyses, far superior to the intensity-based imaging. We demonstrate its uses with monolayer cell cultures, complex 3D tissue models of tumor cell spheroids and intestinal organoids, and in physiological study with metformin treatment

    A deeper understanding of intestinal organoid metabolism revealed by combining fluorescence lifetime imaging microscopy (FLIM) and extracellular flux analyses

    Get PDF
    Stem cells and the niche in which they reside feature a complex microenvironment with tightly regulated homeostasis, cell-cell interactions and dynamic regulation of metabolism. A significant number of organoid models has been described over the last decade, yet few methodologies can enable single cell level resolution analysis of the stem cell niche metabolic demands, in real-time and without perturbing integrity. Here, we studied the redox metabolism of Lgr5-GFP intestinal organoids by two emerging microscopy approaches based on luminescence lifetime measurement - fluorescence-based FLIM for NAD(P)H, and phosphorescence-based PLIM for real-time oxygenation. We found that exposure of stem (Lgr5-GFP) and differentiated (no GFP) cells to high and low glucose concentrations resulted in measurable shifts in oxygenation and redox status. NAD(P)H-FLIM and O-2-PLIM both indicated that at high 'basal' glucose conditions, Lgr5-GFP cells had lower activity of oxidative phosphorylation when compared with cells lacking Lgr5. However, when exposed to low (0.5 mM) glucose, stem cells utilized oxidative metabolism more dynamically than non-stem cells. The high heterogeneity of complex 3D architecture and energy production pathways of Lgr5-GFP organoids were also confirmed by the extracellular flux (XF) analysis. Our data reveals that combined analysis of NAD(P)H-FLIM and organoid oxygenation by PLIM represents promising approach for studying stem cell niche metabolism in a live readout

    Estimation of the mitochondrial membrane potential using fluorescence lifetime imaging microscopy

    Get PDF
    Monitoring of cell metabolism represents an important application area for fluorescence lifetime imaging microscopy (FLIM). In particular, assessment of mitochondrial membrane potential (MMP) in complex three‐dimensional multicellular in vitro, ex vivo, and in vivo models would enable improved segmentation and functional discrimination of cell types, directly report on the mitochondrial function and complement the quenched‐phosphorescence detection of cellular O2 and two‐photon excited FLIM of endogenous NAD(P)H. Here, we report the green and orange‐emitting fluorescent dyes SYTO and tetramethylrhodamine methyl ester (TMRM) as potential FLIM probes for MMP. In addition to nuclear, SYTO 16 and 24 dyes also display mitochondrial accumulation. FLIM with the culture of human colon cancer HCT116 cells allowed observation of the heterogeneity of mitochondrial polarization during the cell cycle progression. The dyes also demonstrated good performance with 3D cultures of Lgr5‐GFP mouse intestinal organoids, providing efficient and quick cell staining and compatibility with two‐photon excitation. Multiplexed imaging of Lgr5‐GFP, proliferating cells (Hoechst 33342‐aided FLIM), and TMRM‐FLIM allowed us to identify the population of metabolically active cells in stem cell niche. TMRM‐FLIM enabled to visualize the differences in membrane potential between Lgr5‐positive and other proliferating and differentiated cell types. Altogether, SYTO 24 and TMRM dyes represent promising markers for advanced FLIM‐based studies of cell bioenergetics with complex 3D and in vivo models

    Extracellular Ca2+-sensing fluorescent protein biosensor based on a collagen-binding domain

    Get PDF
    The importance of extracellular gradients of biomolecules is increasingly appreciated in the processes of tissue development and regeneration, in health and disease. In particular, the dynamics of extracellular calcium concentration is rarely studied. Here, we present a low affinity Ca2+ biosensor based on Twitch-2B fluorescent protein fused with the cellulose- and collagen-binding peptides. These recombinant chimeric proteins can bind cellulose and collagen scaffolds and enable scaffold-based biosensing of Ca2+ in the proximity of cells in live 3D tissue models. We found that the Twitch-2B mutant is compatible with intensity-based ratiometric and fluorescence lifetime imaging microscopy (FLIM) measurement formats, under one- and two-photon excitation modes. Furthermore, the donor fluorescence lifetime of the biosensor displays response to [Ca2+] over a range of similar to 2-2.5 ns, making it attractive for multiplexed FLIM assays. To evaluate the performance of this biosensor in physiological measurements, we applied it to the live Lgr5-GFP mouse intestinal organoid culture and measured its responses to the changes in extracellular Ca2+ upon chelation with EGTA. When combined with spectrally resolved FLIM of lipid droplets using Nile red dye, we observed changes in cytoplasmic and basal membrane-associated lipid droplet composition in response to the extracellular Ca2+ depletion, suggesting that the intestinal epithelium can respond to and compensate such treatment. Altogether, our results demonstrate Twitch-2B as a prospective Ca2+ sensor for multiplexed FLIM analysis in a complex 3D tissue environment

    Evolutionary diversification of the BetaM interactome acquired through co-option of the ATP1B4 gene in placental mammals

    Get PDF
    ATP1B4 genes represent a rare instance of orthologous vertebrate gene co-option that radically changed properties of the encoded BetaM proteins, which function as Na, K-ATPase subunits in lower vertebrates and birds. Eutherian BetaM has lost its ancestral function and became a muscle-specific resident of the inner nuclear membrane. Our earlier work implicated BetaM in regulation of gene expression through direct interaction with the transcriptional co-regulator SKIP. To gain insight into evolution of BetaM interactome we performed expanded screening of eutherian and avian cDNA libraries using yeast-two-hybrid and split-ubiquitin systems. The inventory of identified BetaM interactors includes lamina-associated protein LAP-1, myocyte nuclear envelope protein Syne1, BetaM itself, heme oxidases HMOX1 and HMOX2; transcription factor LZIP/CREB3, ERGIC3, PHF3, reticulocalbin-3, and beta-sarcoglycan. No new interactions were found for chicken BetaM and human Na, K-ATPase beta 1, beta 2 and beta 3 isoforms, indicating the uniqueness of eutherian BetaM interactome. Analysis of truncated forms of BetaM indicates that residues 72-98 adjacent to the membrane in nucleoplasmic domain are important for the interaction with SKIP. These findings demonstrate that evolutionary alterations in structural and functional properties of eutherian BetaM proteins are associated with the increase in its interactome complexity

    Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering

    Get PDF
    Quantitative measurement of pH and metabolite gradients by microscopy is one of the challenges in the production of scaffold-grown organoids and multicellular aggregates. Herein, we used the cellulose-binding domain (CBD) of the Cellulomonas fimi CenA protein for designing biosensor scaffolds that allow measurement of pH and Ca2+ gradients by fluorescence intensity and lifetime imaging (FLIM) detection modes. By fusing CBD with pH-sensitive enhanced cyan fluorescent protein (CBD-ECFP), we achieved efficient labeling of cellulose-based scaffolds based on nanofibrillar, bacterial cellulose, and decellularized plant materials. CBD-ECFP bound to the cellulose matrices demonstrated pH sensitivity comparable to untagged ECFP (1.9–2.3 ns for pH 6–8), thus making it compatible with FLIM-based analysis of extracellular pH. By using 3D culture of human colon cancer cells (HCT116) and adult stem cell-derived mouse intestinal organoids, we evaluated the utility of the produced biosensor scaffold. CBD-ECFP was sensitive to increases in extracellular acidification: the results showed a decline in 0.2–0.4 pH units in response to membrane depolarization by the protonophore FCCP. With the intestinal organoid model, we demonstrated multiparametric imaging by combining extracellular acidification (FLIM) with phosphorescent probe-based monitoring of cell oxygenation. The described labeling strategy allows for the design of extracellular pH-sensitive scaffolds for multiparametric FLIM assays and their use in engineered live cancer and stem cell-derived tissues. Collectively, this research can help in achieving the controlled biofabrication of 3D tissue models with known metabolic characteristics. Statement of Significance: We designed biosensors consisting of a cellulose-binding domain (CBD) and pH- and Ca2+-sensitive fluorescent proteins. CBD-tagged biosensors efficiently label various types of cellulose matrices including nanofibrillar cellulose and decellularized plant materials. Hybrid biosensing cellulose scaffolds designed in this study were successfully tested by multiparameter FLIM microscopy in 3D cultures of cancer cells and mouse intestinal organoids

    Properties of a cryptic lysyl oxidase from haloarchaeon Haloterrigena turkmenica

    Get PDF
    Background Lysyl oxidases (LOX) have been extensively studied in mammals, whereas properties and functions of recently found homologues in prokaryotic genomes remain enigmatic. Methods LOX open reading frame was cloned from Haloterrigena turkmenica in an E. coli expression vector. Recombinant Haloterrigena turkmenica lysyl oxidase (HTU-LOX) proteins were purified using metal affinity chromatography under denaturing conditions followed by refolding. Amine oxidase activity has been measured fluorometrically as hydrogen peroxide release coupled with the oxidation of 10-acetyl-3,7-dihydroxyphenoxazine in the presence of horseradish peroxidase. Rabbit polyclonal antibodies were obtained and used in western blotting. Results Cultured H. turkmenica has no detectable amine oxidase activity. HTU-LOX may be expressed in E. coli with a high protein yield. The full-length protein gives no catalytic activity. For this reason, we hypothesized that the hydrophobic N-terminal region may interfere with proper folding and its removal may be beneficial. Indeed, truncated His-tagged HTU-LOX lacking the N-terminal hydrophobic signal peptide purified under denaturing conditions can be successfully refolded into an active enzyme, and a larger N-terminal truncation further increases the amine oxidase activity. Refolding is optimal in the presence of Cu2+ at pH 6.2 and is not sensitive to salt. HTU-LOX is sensitive to LOX inhibitor 3-aminopropionitrile. HTU-LOX deaminates usual substrates of mammalian LOX such as lysine-containing polypeptides and polymers. The major difference between HTU-LOX and mammalian LOX is a relaxed substrate specificity of the former. HTU-LOX readily oxidizes various primary amines including such compounds as taurine and glycine, benzylamine being a poor substrate. Of note, HTU-LOX is also active towards several aminoglycoside antibiotics and polymyxin. Western blotting indicates that epitopes for the anti-HTU-LOX polyclonal antibodies coincide with a high molecular weight protein in H. turkmenica cells. Conclusion H. turkmenica contains a lysyl oxidase gene that was heterologously expressed yielding an active recombinant enzyme with important biochemical features conserved between all known LOXes, for example, the sensitivity to 3-aminopropionitrile. However, the native function in the host appears to be cryptic. Significance This is the first report on some properties of a lysyl oxidase from Archaea and an interesting example of evolution of enzymatic properties after hypothetical horizontal transfers between distant taxa

    Multi-parametric imaging of hypoxia and cell cycle in intestinal organoid culture

    No full text
    Dynamics of oxygenation of tissue and stem cell niches are important for understanding physiological function of the intestine in normal and diseased states. Only a few techniques allow live visualization of tissue hypoxia at cellular level and in three dimensions. We describe an optimized protocol, which uses cell-penetrating O-2-sensitive probe, Pt-Glc and phosphorescence lifetime imaging microscopy (PLIM), to analyze O-2 distribution in mouse intestinal organoids. Unlike the other indirect and end-point hypoxia stains, or point measurements with microelectrodes, this method provides high-resolution real-time visualization of O-2 in organoids. Multiplexing with conventional fluorescent live cell imaging probes such as the Hoechst 33342-based FLIM assay of cell proliferation, and immunofluorescence staining of endogenous proteins, allows analysis of key physiologic parameters under O-2 control in organoids. The protocol is useful for gastroenterology and physiology of intestinal tissue, hypoxia research, regenerative medicine, studying host-microbiota interactions and bioenergetics
    corecore