319 research outputs found

    E22Δ Mutation in Amyloid β-Protein Promotes β-Sheet Transformation, Radical Production, and Synaptotoxicity, But Not Neurotoxicity

    Get PDF
    Oligomers of 40- or 42-mer amyloid β-protein (Aβ40, Aβ42) cause cognitive decline and synaptic dysfunction in Alzheimer's disease. We proposed the importance of a turn at Glu22 and Asp23 of Aβ42 to induce its neurotoxicity through the formation of radicals. Recently, a novel deletion mutant at Glu22 (E22Δ) of Aβ42 was reported to accelerate oligomerization and synaptotoxicity. To investigate this mechanism, the effects of the E22Δ mutation in Aβ42 and Aβ40 on the transformation of β-sheets, radical production, and neurotoxicity were examined. Both mutants promoted β-sheet transformation and the formation of radicals, while their neurotoxicity was negative. In contrast, E22P-Aβ42 with a turn at Glu22 and Asp23 exhibited potent neurotoxicity along with the ability to form radicals and potent synaptotoxicity. These data suggest that conformational change in E22Δ-Aβ is similar to that in E22P-Aβ42 but not the same, since E22Δ-Aβ42 exhibited no cytotoxicity, unlike E22P-Aβ42 and wild-type Aβ42

    In Vivo Tracking of Transplanted Mononuclear Cells Using Manganese-Enhanced Magnetic Resonance Imaging (MEMRI)

    Get PDF
    BACKGROUND: Transplantation of mononuclear cells (MNCs) has previously been tested as a method to induce therapeutic angiogenesis to treat limb ischemia in clinical trials. Non-invasive high resolution imaging is required to track the cells and evaluate clinical relevance after cell transplantation. The hypothesis that MRI can provide in vivo detection and long-term observation of MNCs labeled with manganese contrast-agent was investigated in ischemic rat legs. METHODS AND FINDINGS: The Mn-labeled MNCs were evaluated using 7-tesla high-field magnetic resonance imaging (MRI). Intramuscular transplanted Mn-labeled MNCs were visualized with MRI for at least 7 and up to 21 days after transplantation in the ischemic leg. The distribution of Mn-labeled MNCs was similar to that of ¹¹¹In-labeled MNCs measured with single-photon emission computed tomography (SPECT) and DiI-dyed MNCs with fluorescence microscopy. In addition, at 1-2 days after transplantation the volume of the site injected with intact Mn-labeled MNCs was significantly larger than that injected with dead MNCs, although the dead Mn-labeled MNCs were also found for approximately 2 weeks in the ischemic legs. The area covered by CD31-positive cells (as a marker of capillary endothelial cells) in the intact Mn-MNCs implanted site at 43 days was significantly larger than that at a site implanted with dead Mn-MNCs. CONCLUSIONS: The present Mn-enhanced MRI method enabled visualization of the transplanted area with a 150-175 µm in-plane spatial resolution and allowed the migration of labeled-MNCs to be observed for long periods in the same subject. After further optimization, MRI-based Mn-enhanced cell-tracking could be a useful technique for evaluation of cell therapy both in research and clinical applications

    Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications

    Get PDF
    To photo-catalytically degrade RhB dye using solar irradiation, CeO2 doped TiO2 nanocomposites were synthesized hydrothermally at 700 °C for 9 hrs. All emission spectra showed a prominent band centered at 442 nm that was attributed to oxygen related defects in the CeO2-TiO2 nanocrystals. Two sharp absorption bands at 1418 cm−1 and 3323 cm−1 were attributed to the deformation and stretching vibration, and bending vibration of the OH group of water physisorbed to TiO2, respectively. The photocatalytic activities of Ce-TiO2 nanocrystals were investigated through the degradation of RhB under UV and UV+ visible light over a period of 8 hrs. After 8 hrs, the most intense absorption peak at 579 nm disappeared under the highest photocatalytic activity and 99.89% of RhB degraded under solar irradiation. Visible light-activated TiO2 could be prepared from metal-ion incorporation, reduction of TiO2, non-metal doping or sensitizing of TiO2 using dyes. Studying the antibacterial activity of Ce-TiO2 nanocrystals against E. coli revealed significant activity when 10 μg was used, suggesting that it can be used as an antibacterial agent. Its effectiveness is likely related to its strong oxidation activity and superhydrophilicity. This study also discusses the mechanism of heterogeneous photocatalysis in the presence of TiO2

    18F-Fluorination by Crown Ether-Metal Fluoride: II. Non-Carrier-Added Labeling Method

    No full text
    For non-carrier-added 18F-labeling of organic compounds, details were studied concerning the previously developed KF-crown ether method. In the modified method, a minute amount of KOH instead of carrier KF is addede for the preparation of the anhydrous 18F from aqueous carrier-free 18F. The following factors were examined in order to determine optimum conditions for the preparation of the anhydrous non-carrier-added 18F and the labeling synthesis with it: effects of the vessel on the evaporation of the 18F-KOH solution andn the amount of added KOH for the conversion of aqueous 18F to anhydrous 18F, the solubilized activity of the 18F obtained by the evaporation in organic solutions containing 18-Crown-6 and the laveling reaction, as examplified by the synthesis of 21-fluoroprogesterone

    Design and Evaluation of Radioactive Acetylcholine Analogs for Mapping Brain Acetylcholinesterase (AchE) In Vivo

    No full text
    For mapping brain acetylcholinesterase (AchE) in vivo. seven radioactive acetylcholine analogs, N-[14C]methylpiperidyl-3- and 4-acetates, propionates, isobutyrates, and 3-butyrate were newly synthesized and evaluated in mice. The esters readily entered the brain and were hydrolyzed into the hydrophilic metabolite, which was trapped. In brain homogenates, the esters showed a wide range of enzymatic reactivity (about 40-fold), and high specificity for AchE (more than 82%) except the butrate. Intra-brain distribution of the esters reflected a pattern of AchE activity

    Production System for 18F-2-Deoxy-2-fluoro-D-glucose -A trial for automatic production-

    No full text
    We have developed a production system for 18F-2-deoxy-2-fluoro-D-glucose (18F-2FDG), which assures reliable production with easy handling and reduces radiation exposures to the operator. Chemical procedures in this system are the same as manual method developed in NIRS. This system has 2 operation modes; one is remote controlled mamual operation mode and the other is microcomputer controlled automatic operation mode. In remote controlled mode, we tested this system 5 times and 18F-2FDG synthesized was supplied for clinical use once. The mean radiochemical yield of 18F-2FDG from the target gas recovery with decay time correction was 8%, that is the same as in the manual synthesis. It took about 2 hours from end of bombardment (EOB) to end of synthesis (EOS). Since this time is shorter than in manual synthesis, the available activity at EOS is increased
    corecore