16 research outputs found

    Allelic Expression Imbalance Promoting a Mutant PEX6 Allele Causes Zellweger Spectrum Disorder

    Get PDF
    Zellweger spectrum disorders (ZSDs) are autosomal-recessive disorders that are caused by defects in peroxisome biogenesis due to bi-allelic mutations in any of 13 different PEX genes. Here, we identified seven unrelated individuals affected with an apparent dominant ZSD in whom a heterozygous mutant PEX6 allele (c.2578C&gt;T [p.Arg860Trp]) was overrepresented due to allelic expression imbalance (AEI). We demonstrated that AEI of PEX6 is a common phenomenon and is correlated with heterozygosity for a frequent variant in the 3' untranslated region (UTR) of the mutant allele, which disrupts the most distal of two polyadenylation sites. Asymptomatic parents, who were heterozygous for PEX c.2578C&gt;T, did not show AEI and were homozygous for the 3' UTR variant. Overexpression models confirmed that the overrepresentation of the pathogenic PEX6 c.2578T variant compared to wild-type PEX6 c.2578C results in a peroxisome biogenesis defect and thus constitutes the cause of disease in the affected individuals. AEI promoting the overrepresentation of a mutant allele might also play a role in other autosomal-recessive disorders, in which only one heterozygous pathogenic variant is identified.</p

    Discovertebral (Andersson) lesions in severe ankylosing spondylitis: a study using MRI and conventional radiography

    Get PDF
    The objective of this study is to investigate the prevalence of Andersson lesions (AL) in ankylosing spondylitis (AS) patients who will start anti-tumor necrosis factor (TNF) treatment. Radiographs and magnetic resonance imaging (MRI) of the spine were performed before therapy with anti-TNF. ALs were defined as discovertebral endplate destructions on MRI, associated with bone marrow edema and fat replacement or sclerosis, a decreased signal on T1, enhancement after contrast administration (gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA)), and increased signal on T2 and short tau inversion recovery (STIR). Additionally, conventional radiography showed a fracture line, irregular endplates, and increased sclerosis of adjacent vertebral bodies. Fifty-six AS patients were included, 68% males, mean age of 43 years, and mean disease duration of 11 years. The mean bath ankylosing spondylitis disease activity index was 6.4, and 24% of all patients had ankylosis. Only one patient showed a discovertebral abnormality with bone marrow edema of more than 50% of the vertebral bodies adjacent to the intervertebral disk of T7/T8 and T9/T10, a hypodense signal area on T1, and a high signal on STIR. Irregular endplates were depicted, and T1 after Gd-DTPA demonstrated high signal intensity around the disk margins. However, no fracture line was visible on conventional radiology, and therefore, this case was not considered to be an AL. No AL was detected in our AS patients, who were candidates for anti-TNF treatment. One patient showed a discovertebral abnormality on MRI, without a fracture line on conventional radiology. The relative small proportion of patients with a long-established disease might explain this finding for, particularly, an ankylosed spine is prone to develop an AL

    The Introduction of Bioptic Driving in the Netherlands

    Get PDF
    Background: In many US states, people with moderately reduced visual acuity (eg, 20/50–20/200) can legally drive with the aid of a small, spectacle-mounted (“bioptic”) telescope.We conducted a demonstration project to assess the viability of implementing bioptic driving in the Netherlands. In this article, we describe the framework of the project from conception through to realization of our primary objective—the introduction of bioptic driving as a legal option for visually impaired people in the Netherlands. Methods: The project was based on bioptic driving programs in the United States, which were adapted to fit into current driving training and assessment practices in the Netherlands. The project convened a consortium of organizations including the Netherlands Bureau of Driving Skills Certificates, service organizations for the visually impaired, and research departments at universities investigating driving and vision. All organizations were educated about bioptic driving and participating professionals were trained in their specific aspects of the project. Media publicity led to significant interest and helped recruitment that enabled the screening and selection of potential participants. Outcomes: The project demonstrated that people with moderately reduced visual acuity can be trained to achieve an adequate level of proficient and safe driving (as assessed by the local official driving licensing professionals) when using a bioptic telescope for the road conditions in the Netherlands. Based on the successful project outcomes, a request was made to the minister to allow bioptic driving in the Netherlands. This request has been accepted; the legal procedures for implementation are in process

    Adrenoleukodystrophy - neuroendocrine pathogenesis and redefinition of natural history

    No full text
    X-Linked adrenoleukodystrophy (ALD) is a peroxisomal metabolic disorder with a highly complex clinical presentation. ALD is caused by mutations in the ABCD1 gene, which leads to the accumulation of very long-chain fatty acids in plasma and tissues. Virtually all men with ALD develop adrenal insufficiency and myelopathy. Approximately 60% of men develop progressive cerebral white matter lesions (known as cerebral ALD). However, one cannot identify these individuals until the early changes are seen using brain imaging. Women with ALD also develop myelopathy, but generally at a later age than men and adrenal insufficiency or cerebral ALD are very rare. Owing to the multisystem symptomatology of the disease, patients can be assessed by the paediatrician, general practitioner, endocrinologist or a neurologist. This Review describes current knowledge on the clinical presentation, diagnosis and treatment of ALD, and highlights gaps in our knowledge of the natural history of the disease owing to an absence of large-scale prospective cohort studies. Such studies are necessary for the identification of new prognostic biomarkers to improve care for patients with ALD, which is particularly relevant now that newborn screening for ALD is being introduce

    Clinical and Biochemical Pitfalls in the Diagnosis of Peroxisomal Disorders

    No full text
    Peroxisomal disorders are a heterogeneous group of genetic metabolic disorders, caused by a defect in peroxisome biogenesis or a deficiency of a single peroxisomal enzyme. The peroxisomal disorders include the Zellweger spectrum disorders, the rhizomelic chondrodysplasia punctata spectrum disorders, X-linked adrenoleukodystrophy, and multiple single enzyme deficiencies. There are several core phenotypes caused by peroxisomal dysfunction that clinicians can recognize. The diagnosis is suggested by biochemical testing in blood and urine and confirmed by functional assays in cultured skin fibroblasts, followed by mutation analysis. This review describes the phenotype of the main peroxisomal disorders and possible pitfalls in (laboratory) diagnosis to aid clinicians in the recognition of this group of disease

    Allelic Expression Imbalance Promoting a Mutant PEX6 Allele Causes Zellweger Spectrum Disorder

    Get PDF
    Zellweger spectrum disorders (ZSDs) are autosomal-recessive disorders that are caused by defects in peroxisome biogenesis due to bi-allelic mutations in any of 13 different PEX genes. Here, we identified seven unrelated individuals affected with an apparent dominant ZSD in whom a heterozygous mutant PEX6 allele (c.2578C&gt;T [p.Arg860Trp]) was overrepresented due to allelic expression imbalance (AEI). We demonstrated that AEI of PEX6 is a common phenomenon and is correlated with heterozygosity for a frequent variant in the 3' untranslated region (UTR) of the mutant allele, which disrupts the most distal of two polyadenylation sites. Asymptomatic parents, who were heterozygous for PEX c.2578C&gt;T, did not show AEI and were homozygous for the 3' UTR variant. Overexpression models confirmed that the overrepresentation of the pathogenic PEX6 c.2578T variant compared to wild-type PEX6 c.2578C results in a peroxisome biogenesis defect and thus constitutes the cause of disease in the affected individuals. AEI promoting the overrepresentation of a mutant allele might also play a role in other autosomal-recessive disorders, in which only one heterozygous pathogenic variant is identified.</p

    Rhizomelic chondrodysplasia punctata and cardiac pathology

    No full text
    Rhizomelic chondrodysplasia punctata (RCDP) is an autosomal recessive peroxisomal disorder characterised by rhizomelia, contractures, congenital cataracts, facial dysmorphia, severe psychomotor defects and growth retardation. Biochemically, the levels of plasmalogens (major constituents of cellular membranes) are low due to a genetic defect in their biosynthesis. Cardiac muscle contains high concentrations of plasmalogens. Recently cardiac dysfunction was found in a mouse model for RCDP with undetectable plasmalogen levels in all tissues including the heart. This suggests the importance of plasmalogens in normal cardiac development and function. Congenital heart disease (CHD), however, has not been recognised as a major characteristic of RCDP. We aimed to determine the prevalence of CHD found in RCDP patients as well as to describe genetic, biochemical and cardiac correlations. We included 23 patients with genetically proven RCDP. The genetic, biochemical and physical data were evaluated. Echocardiograms were reviewed. Cardiac data were available for 18 patients. 12 (52%) had CHD. All twelve had type 1 RCDP and 11 (92%) had the PEX 7:c.875T>A mutation, of whom seven were homozygous (58%). Plasmalogen levels were significantly lower in the patients with CHD. Cardiac lesions included: septal defects (80% atrial), patent ductus arteriosus, pulmonary artery hypoplasia, tetralogy of Fallot and mitral valve prolapse (mostly older patients). The CHD prevalence among RCDP patients was at least 52%, significantly higher than among the normal population. Plasmalogen levels were significantly lower in patients with CHD. Routine cardiac evaluation should be included in the clinical management of RCDP patient

    A novel defect of peroxisome division due to a homozygous non-sense mutation in the PEX11 beta gene

    No full text
    Background Peroxisomes are organelles that proliferate continuously and play an indispensable role in human metabolism. Consequently, peroxisomal gene defects can cause multiple, often severe disorders, including the peroxisome biogenesis disorders. Currently, 13 different PEX proteins have been implicated in various stages of peroxisome assembly and protein import. Defects in any of these proteins result in a peroxisome biogenesis disorder. The authors present here a novel genetic defect specifically affecting the division of peroxisomes. Methods The authors have studied biochemical and microscopical peroxisomal parameters in cultured patient fibroblasts, sequenced candidate PEX genes and determined the consequence of the identified PEX11 beta gene defect on peroxisome biogenesis in patient fibroblasts at different temperatures. Results The patient presented with congenital cataracts, mild intellectual disability, progressive hearing loss, sensory nerve involvement, gastrointestinal problems and recurrent migraine-like episodes. Although microscopical investigations of patient fibroblasts indicated a clear defect in peroxisome division, all biochemical parameters commonly used for diagnosing peroxisomal disorders were normal. After excluding mutations in all PEX genes previously implicated in peroxisome biogenesis disorders, it was found that the defect was caused by a homozygous non-sense mutation in the PEX11 beta gene. The peroxisome division defect was exacerbated when the patient's fibroblasts were cultured at 40 degrees C, which correlated with a marked decrease in the expression of PEX11 gamma. Conclusions This novel isolated defect in peroxisome division expands the clinical and genetic spectrum of peroxisomal disorders and indicates that peroxisomal defects exist, which cannot be diagnosed by standard laboratory investigation

    Comparison of C26:0-carnitine and C26:0-lysophosphatidylcholine as diagnostic markers in dried blood spots from newborns and patients with adrenoleukodystrophy

    No full text
    X-linked adrenoleukodystrophy (ALD) is the most common leukodystrophy with a birth incidence of 1:14,700 live births. The disease is caused by mutations in ABCD1 and characterized by very long-chain fatty acids (VLCFA) accumulation. In childhood, male patients are at high-risk to develop adrenal insufficiency and/or cerebral demyelination. Timely diagnosis is essential. Untreated adrenal insufficiency can be life-threatening and hematopoietic stem cell transplantation is curative for cerebral ALD provided the procedure is performed in an early stage of the disease. For this reason, ALD is being added to an increasing number of newborn screening programs. ALD newborn screening involves the quantification of C26:0-lysoPC in dried blood spots which requires a dedicated method. C26:0-carnitine, that was recently identified as a potential new biomarker for ALD, has the advantage that it can be added as one more analyte to the routine analysis of amino acids and acylcarnitines already in use. The first objective of this study was a comparison of the sensitivity of C26:0-carnitine and C26:0-lysoPC in dried blood spots from control and ALD newborns both in a case-control study and in newborns included in the New York State screening program. While C26:0-lysoPC was elevated in all ALD newborns, C26:0-carnitine was elevated only in 83%. Therefore, C26:0-carnitine is not a suitable biomarker to use in ALD newborn screen. In women with ALD, plasma VLCFA analysis results in a false negative result in approximately 15-20% of cases. The second objective of this study was to compare plasma VLCFA analysis with C26:0-carnitine and C26:0-lysoPC in dried blood spots of women with ALD. Our results show that C26:0-lysoPC was elevated in dried blood spots from all women with ALD, including from those with normal plasma C26:0 levels. This shows that C26:0-lysoPC is a better and more accurate biomarker for ALD than plasma VLCFA levels. We recommend that C26:0-lysoPC be added to the routine biochemical array of diagnostic tests for peroxisomal disorder

    Nutritional ketosis improves exercise metabolism in patients with very long-chain acyl-CoA dehydrogenase deficiency

    Get PDF
    A maladaptive shift from fat to carbohydrate (CHO) oxidation during exercise is thought to underlie myopathy and exercise-induced rhabdomyolysis in patients with fatty acid oxidation (FAO) disorders. We hypothesised that ingestion of a ketone ester (KE) drink prior to exercise could serve as an alternative oxidative substrate supply to boost muscular ATP homeostasis. To establish a rational basis for therapeutic use of KE supplementation in FAO, we tested this hypothesis in patients deficient in Very Long-Chain acyl-CoA Dehydrogenase (VLCAD). Five patients (range 17-45 y; 4 M/1F) patients were included in an investigator-initiated, randomised, blinded, placebo-controlled, 2-way cross-over study. Patients drank either a KE + CHO mix or an isocaloric CHO equivalent and performed 35 minutes upright cycling followed by 10 minutes supine cycling inside a Magnetic Resonance scanner at individual maximal FAO work rate (fatmax; approximately 40% VO2max). The protocol was repeated after a 1-week interval with the alternate drink. Primary outcome measures were quadriceps phosphocreatine (PCr), Pi and pH dynamics during exercise and recovery assayed by in vivo 31P-MR spectroscopy. Secondary outcomes included plasma and muscle metabolites and respiratory gas exchange recordings. Ingestion of KE rapidly induced mild ketosis and increased muscle BHB content. During exercise at FATMAX, VLCADD-specific plasma acylcarnitine levels, quadriceps glycolytic intermediate levels and in vivo Pi/PCr ratio were all lower in KE + CHO than CHO. These results provide a rational basis for future clinical trials of synthetic ketone ester supplementation therapy in patients with FAO disorders. Trial registration: ClinicalTrials.gov. Protocol ID: NCT03531554; METC2014.492; ABR51222.042.14
    corecore