99 research outputs found

    Impact of strong magnetic fields on collision mechanism for transport of charged particles

    Full text link
    One of the main applications in plasma physics concerns the energy production through thermo-nuclear fusion. The controlled fusion is achieved by magnetic confinement i.e., the plasma is confined into a toroidal domain (tokamak) under the action of huge magnetic fields. Several models exist for describing the evolution of strongly magnetized plasmas, most of them by neglecting the collisions between particles. The subject matter of this paper is to investigate the effect of large magnetic fields with respect to a collision mechanism. We consider here linear collision Boltzmann operators and derive, by averaging with respect to the fast cyclotronic motion due to strong magnetic forces, their effective collision kernels

    Propagation of L1L^{1} and L∞L^{\infty} Maxwellian weighted bounds for derivatives of solutions to the homogeneous elastic Boltzmann Equation

    Get PDF
    We consider the nn-dimensional space homogeneous Boltzmann equation for elastic collisions for variable hard potentials with Grad (angular) cutoff. We prove sharp moment inequalities, the propagation of L1L^1-Maxwellian weighted estimates, and consequently, the propagation L∞L^\infty-Maxwellian weighted estimates to all derivatives of the initial value problem associated to the afore mentioned problem. More specifically, we extend to all derivatives of the initial value problem associated to this class of Boltzmann equations corresponding sharp moment (Povzner) inequalities and time propagation of L1L^1-Maxwellian weighted estimates as originally developed A.V. Bobylev in the case of hard spheres in 3 dimensions; an improved sharp moments inequalities to a larger class of angular cross sections and L1L^1-exponential bounds in the case of stationary states to Boltzmann equations for inelastic interaction problems with `heating' sources, by A.V. Bobylev, I.M. Gamba and V.Panferov, where high energy tail decay rates depend on the inelasticity coefficient and the the type of `heating' source; and more recently, extended to variable hard potentials with angular cutoff by I.M. Gamba, V. Panferov and C. Villani in the elastic case collision case and so L1L^1-Maxwellian weighted estimated were shown to propagate if initial states have such property. In addition, we also extend to all derivatives the propagation of L∞L^\infty-Maxwellian weighted estimates to solutions of the initial value problem to the Boltzmann equations for elastic collisions for variable hard potentials with Grad (angular) cutoff.Comment: 24 page
    • …
    corecore