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Abstract

We consider the n-dimensional space homogeneous Boltzmann equation for elastic collisions for variable hard potentials with
Grad (angular) cutoff. We prove sharp moment inequalities, the propagation of L1-Maxwellian weighted estimates, and conse-
quently, the propagation L∞-Maxwellian weighted estimates to all derivatives of the initial value problem associated to the afore
mentioned equation. More specifically, we extend to all derivatives of the initial value problem associated to this class of Boltz-
mann equations corresponding sharp moment (Povzner) inequalities and time propagation of L1-Maxwellian weighted estimates
as originally developed Bobylev [A.V. Bobylev, Moment inequalities for the Boltzmann equation and applications to spatially
homogeneous problems, J. Statist. Phys. 88 (1997) 1183–1214] in the case of hard spheres in 3 dimensions. To achieve this goal
we implement the program presented in Bobylev–Gamba–Panferov [A.V. Bobylev, I.M. Gamba, V. Panferov, Moment inequalities
and high-energy tails for Boltzmann equation with inelastic interactions, J. Statist. Phys. 116 (5–6) (2004) 1651–1682], which
includes a full analysis of the moments by means of sharp moment inequalities and the control of L1-exponential bounds, in the
case of stationary states for different inelastic Boltzmann related problems with ‘heating’ sources where high energy tail decay
rates depend on the inelasticity coefficient and the type of ‘heating’ source. More recently, this work was extended to variable hard
potentials with angular cutoff by Gamba–Panferov–Villani [I.M. Gamba, V. Panferov, C. Villani, Upper Maxwellian bounds for the
spatially homogeneous Boltzmann equation, ARMA (2008), in press] in the elastic case collision case where the L1-Maxwellian
weighted norm was shown to propagate if initial states have such property. In addition, we also extend to all derivatives the propa-
gation of L∞-Maxwellian weighted estimates, proven in [I.M. Gamba, V. Panferov, C. Villani, Upper Maxwellian bounds for the
spatially homogeneous Boltzmann equation, ARMA (2008), in press], to solutions of the initial value problem to the Boltzmann
equations for elastic collisions for variable hard potentials with Grad (angular) cutoff.
© 2008 Elsevier Masson SAS. All rights reserved.

Résumé

Nous considérons l’équation de Boltzmann homogène en espace, de dimension n en vitesse, avec potentiels raides variables et
troncature angulaire de Grad. Nous montrons des estimations fines sur les moments et sur la propagation en temps de normes L1
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à poids maxwelliens. Ceci nous permet de déduire la propagation en temps de normes L∞ à poids maxwelliens pour toutes les
dérivées de la solution du problème de Cauchy.

En particulier, nous étendons à toutes les dérivées les estimations fines de moments (inégalités de Povzner) et les résultats de
propagation en temps de normes L1 à poids maxwelliens obtenus précédement par Bobylev [A.V. Bobylev, Moment inequalities
for the Boltzmann equation and applications to spatially homogeneous problems, J. Statist. Phys. 88 (1997) 1183–1214] dans le
cas des spères rigides en dimension 3. Ce résultat utilise des techniques développées par Bobylev–Gamba–Panferov [A.V. Bobylev,
I.M. Gamba, V. Panferov, Moment inequalities and high-energy tails for Boltzmann equation with inelastic interactions, J. Statist.
Phys. 116 (5–6) (2004) 1651–1682] pour étudier, dans une classe plus générale de sections angulaires et de contrôle L1 à poids
maxwelliens, les états stationnaires de l’équation de Boltzmann avec interactions inélastiques et chauffage. Ceci correspond à
des situations où le taux de décroissance des queues d’énergie dépend du coefficient d’inélasticité et du type de chauffage. Nous
généralisons aux cas des potentiels raides variables avec troncature angulaire, le résultat de Gamba–Panferov–Villani [I.M. Gamba,
V. Panferov, C. Villani, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, ARMA (2008), in press]
pour les collisions élastiques qui établit la propagation en temps de normes L1 à poids maxwelliens. Enfin, toujours dans le
cas élastique, nous généralisons les résultats de propagation de [I.M. Gamba, V. Panferov, C. Villani, Upper Maxwellian bounds
for the spatially homogeneous Boltzmann equation, ARMA (2008), in press] à toutes les dérivées avec des normes L∞ à poids
maxwelliens.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The study of propagation of L1-Maxwellian weighted estimates to solutions of the initial value for the n-dimen-
sional space homogeneous Boltzmann equation for elastic collisions for variable hard potentials with Grad (angular)
cutoff entices the study of summability properties of a corresponding series of the solution moments to all orders. This
problem was addressed for the first time by Bobylev in [2] in the case of 3 dimension for the hard sphere problem, i.e.
for constant angular cross section in the collision kernel.

Previously, the behavior of time propagating properties for the moments of the solution to the initial value problem
for the elastic Boltzmann transport equation, in the space homogeneous regime for hard spheres and variable hard
potentials and integrable angular cross sections (Grad cutoff assumption) had been extensively studied, but not their
summability properties. In fact, the study of Povzner estimates and propagation of moments of the solution to the of
variable hard potentials with Grad cutoff assumption, was progressively understood in the work of Desvillettes [4]
and Wennberg [14], where the Povzner estimates, a crucial tool for the moments control in the case of variable hard
spheres with the Grad cutoff assumption, where based on pointwise estimates on the difference between pre- and
post-collisional velocities of convex, isotropic weights functions of the velocity in order to control their integral on
the (n − 1)-dimensional sphere, and consequently, and not sharp enough to obtain summability of moments.

A significant leap was developed by Bobylev [2] where the first proof of summability properties of moments was
established, in the case of hard spheres in 3 dimensions, showing that L1-Maxwellian weighted estimates propa-
gates if the initial data is in within that class. Among several new crucial techniques that were developed in that
fundamental paper, this is a significant improvement of the Povzner estimates based on the averaging (integrals) on
the (n − 1)-dimensional sphere of convex, isotropic weight functions of the velocity, for the case of variable hard
potentials with the Grad cutoff assumption. As a consequence it is possible to established that, in the case of three
dimensions velocity, for hard spheres, the moments of the gain operator will decay proportional to the order of the mo-
ment with respect to the loss term uniformly in time, by means of infinity evolution inequalities in terms of moments.
That key estimate yields summability of a moment series, uniformly in time. Later, Bobylev, Gamba and Panferov [3],
establish the sharpest version of the Povzner inequality for elastic or inelastic collisions, using the approach of [2], by
a somehow reduced argument, under the conditions that both the convex, isotropic weight functions of the velocity and
the angular part of the angular cross section are nondecreasing. The two main ideas are to pass to the center of mass
relative velocity variables and to use the angular integration in to obtain more precise constants in the corresponding
inequalities. The summability property, which in the work of Bobylev [3], was done only for hard spheres in three
dimensions whose the angular cross section is constant, was extended, in [2], to the case of bounded angular section.
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In addition, the problem of stationary states to Boltzmann equations for inelastic interaction problems with ‘heat-
ing’ sources, such as random heat bath, shear flow or self-similar transformed problems, was addressed in [3], where
L1-exponential bounds with decay rates depending of the inelasticity coefficient and the type of ‘heating’ source were
shown as well. In these cases the authors showed L1-exponential weighted decay bounds with slower decay than
Maxwellian (i.e. s < 2).

In an interesting application of these moments summability formulas, estimates and techniques, Mouhot [9], was
able to establish (for the elastic case) a result that proves the instantaneous ‘generation’, of L1-exponential bounds
uniformly in time, with only L1

2 ∩ Ł2 initial data, where the exponential rate is half of the variable hard sphere
exponent, under the same assumptions on the angular function as in [3].

However, still for the elastic case, of variable hard potentials and Grad cutoff assumption, neither [2] nor [3],
addressed the propagation of L1-Maxwellian weighted bounds, uniform in time to solutions of the corresponding
initial value problem in n-dimensions with more realistic intramolecular potentials. In a recent manuscript by Gamba,
Panferov and Villani [5], showed the L1-Maxwellian weighted propagation estimates and the provided a proof to the
open problem of propagation of L∞-Maxwellian weighted bounds, uniformly in time. The Grad cutoff assumption
was still assumed (integrability of the angular part of the collision kernel) without the boundedness condition, but a
growth rate assumption on the angular singularity, depending only on the velocity space dimension, that still keeps
integrability. The propagation of L∞-Maxwellian weighted bounds combines the classical Carleman representation
of the gain operator with the L1-Maxwellian bounds.

More specifically, the behavior for large velocities is commonly called “high energy tails”. Under precise condi-
tions, described in [2] and [5], it is known that for a solution this asymptotic behavior is comparable in some way to
exp(−r|ξ |s) with r, s positive numbers. In the case of elastic interactions, it is known that s = 2, provided the initial
state also has that behavior, i.e. it decays as a Maxwellian. This revealing fact says that a solution of the elastic initial
value problem for the n-dimensional Boltzmann equation, with variable hard potential kernels and singular integrable
angular cross section, decays like a Maxwellian for all times as long as the initial state does it as well.

In this present manuscript, we extend the results of [5] to show both propagation of L1-Maxwellian and L∞-
Maxwellian weighted estimates to all derivatives of the solution to the initial value problem to the space homogeneous
Boltzmann equations for elastic collisions for variable hard potentials with an integrable angular singularity condition
as in [5].

We first note that sharp Povzner inequalities [2,3,5] are, indeed, the main tools for the study of the solution’s
moments for the variable hard potential models. They control the decay of the moments of the gain collision operator
with respect to the moments of the loss collision operator. This technique yields a control of the time derivative of any
higher order moment using the lower order ones. In particular, one uses the Boltzmann equation, in order to build an
infinite system of sharp Povzner inequalities for each moments which can be used, by arguing inductively, to control
each moment uniformly in time. As a result one obtains L1-Maxwellian weighted estimates and the corresponding
L∞-Maxwellian weighted estimates in the elastic interaction models in n-dimensions and for variable hard potential
collision kernels with an integrable angular singularity condition depending on the dimension n.

Here we show that these results extend to the study of propagation of L1-Maxwellian and L∞-Maxwellian
weighted estimates to any high order derivatives of the solution to the n-dimensional elastic Boltzmann equation for
variable hard potentials. In particular, these bounds imply that if the initial derivatives of the solution are controlled
pointwise by the derivatives of a Maxwellian then this control propagates for all times.

The paper is organized as follows. After this introduction, Section 2 presents the problem and the main Theorem 1.
Section 3 focus in finding sharp Povzner inequalities for the solution’s derivatives. All the computations regarding the
derivatives of the collision operator and the action of the differential collision operator on test functions are presented
in Lemmas 1–3. Lemmas 4–7 are devoted to provide a suitable expression ready to use for the construction of the
mentioned system of inequalities on the derivative’s moments. In Lemma 8 such a system of inequalities is presented.

Then in Section 4, all previous results used to obtain information for the solution’s derivatives in the elastic case.
Theorem 2 proves the control of moment’s growth, and Theorem 3 uses Lemma 8 to obtain a global in time bound for
the derivative’s moments in the elastic case yielding the L1-Maxwellian bounds to derivatives of any order. Finally
in Section 5, we show that uniform bounds on the moments of these derivatives lead to a pointwise estimate. This
is possible using an L∞ − L1 Maxwellian weighted control on the gain collision operator as shown in [5] (see
Theorems 5 and 6 in Appendix A). The Boltzmann equation and this control are sufficient to find a time uniform
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pointwise control by Maxwellians for the solution’s derivatives of any order. Calculations of this fact are performed
in Theorem 1, where the L∞-Maxwellian bound is shown.

2. Preliminaries and main result

This section presents the assumptions and notations used along the paper. Assume that the function 0 � f (ξ, t)

with (ξ, t) ∈ R
n × R

+ solves the homogeneous Boltzmann problem:

∂f

∂t
= Q(f,f ) on (0, T ) × R

n, f (ξ,0) = f0, (1)

where Q(f,f ) := Q+(f,f ) − Q−(f,f ) is the standard Boltzmann collision operator for variable hard potentials.
It is defined for any two measurable functions f and g by the formula:

Q(f,g) =
∫
Rn

∫

Sn−1

(
f ′g′∗ − fg∗

)
B(ξ − ξ∗, σ ) dσ dξ∗. (2)

In particular,

Q+(f, g) =
∫
Rn

∫

Sn−1

f ′g′∗B(ξ − ξ∗, σ ) dσ dξ∗ (3)

and,

Q−(f, g) =
∫
Rn

∫

Sn−1

fg∗B(ξ − ξ∗, σ ) dσ dξ∗. (4)

The classical notation ′f , ′f∗, f ′ and f ′∗ is adopted to imply that the distributional function f has the pre-collision
velocity arguments ′ξ , ′ξ∗ or the post collision velocity arguments ξ ′, ξ ′∗. Recall that the dependence of post and
pre-collision velocities is given by the formulas:

ξ ′ = ξ + 1

2

(|u|σ − u
)
, ξ ′∗ = ξ∗ − 1

2

(|u|σ − u
)
,

where σ ∈ Sn−1 is a vector describing the geometry of the collisions, see for example [13], for a complete description.
Intramolecular potentials are modeled by the collision kernel as a nonnegative function given by:

B(ξ − ξ∗, σ ) = |ξ − ξ∗|αh(û · σ) and û = ξ − ξ∗
|ξ − ξ∗| ,

with α ∈ (0,1] and û is the renormalized relative velocity. It is assumed that the angular cross section h(·) has the
following properties:

(i) h(z) � 0 is nonnegative on (−1,1) such that

h(z) + h(−z) is nondecreasing on (0,1);
(ii) 0 � h(z)

(
1 − z2)μ/2 � C for z ∈ (−1,1)

where μ < n − 1 and C > 0 constant.

Note that assumption (i) implies that h(û · σ) ∈ L1(Sn−1). For convenience we normalized its mass as follows:

∫

Sn−1

h(û · σ)dσ = ωn−2

1∫
−1

h(z)
(
1 − z2) n−3

2 dz = 1,

where ωn−2 is measure of the (n − 2)-dimensional sphere.
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In the case of three-dimensional collisional models for variable hard potential, condition (ii) simplifies to,

1∫
−1

h(z) dz = 1/2π, (5)

usually referred as the Grad cutoff assumption. With these assumptions the collision model kernel used still falls in
the category of variable hard potential with angular cut-off. The reader may go to [5] for a recent, complete discussion
on the behavior of the moments of the solution for variable hard potential with cut-off in any dimension.

The standard integrability conditions on the initial datum f0 are assumed:∫
Rn

f0 dξ = 1,

∫
Rn

f0ξ dξ = 0,

∫
Rn

f0|ξ |2 dξ < ∞.

In other words, f0 has finite mass, which is normalized to one for convenience, and finite energy. These conditions
can be addressed in a compact manner using the weighted Lebesgue space L

p
k with p � 1 and k ∈ R, defined by the

norm:

‖f ‖L
p
k (Rn) =

( ∫
Rn

|f |p(
1 + |ξ |2)pk/2

dξ

)1/p

.

In particular the initial datum can be referred as f0 ∈ L1
2.

Following these ideas, the weighted Sobolev spaces W
s,p
k , with s ∈ N , are used to work with the weak derivatives

of f . These spaces are defined by the norm:

‖f ‖W
s,p
k (Rn) =

( ∑
|ν|�s

∥∥∂νf
∥∥p

L
p
k

)1/p

,

where the symbol ∂η is understood as ∂η = ∂
η1
∂ξ1

∂
η2
ξ2

· · · ∂ηn

ξn
for a multi-index η of n dimensions. The usual notation is

used for the Hilbert space Hs
k ≡ W

s,2
k .

Throughout the paper, the order of the multi-index is defined as |η| = ∑
1�i�n ηi , in addition, the comparison

between multi-indexes is denoted as ν < η or ν � η. This is understood as νi � ηi for all 1 � i � n and |ν| < |η| or
|ν| � |η|, respectively.

Regarding the regularity of the initial datum, it is required that f0 ∈ W
s,1
2 for some s � 1 to be chosen afterwards.

The additional assumption f0 ∈ Hs is required for the final result.

Definition 1. Define for any sufficiently regular function f , multi-index η and p > 0 the moment of order p for the η

derivative of f as the time dependent function:

δηmp(t) ≡
∫
Rn

∣∣∂ηf
∣∣|ξ |2p dξ. (6)

This definition tries to generalize the classical definition for the moments, mp(t) ≡ ∫
Rn f |ξ |2p dξ , however an

absolute value is imposed in ∂ηf since this function in general does not have sign. Observe that the condition
f0 ∈ W

s,1
2 is equivalent to say that δνm0(0) and δνm1(0) are bounded for |ν| � s.

The next definition is related to the exponential tail concept introduced in [2] in the study of the solution’s moments
of the elastic homogeneous Boltzmann equation, and later in [3] in the study of large velocity tails for solutions of the
inelastic homogeneous Boltzmann equation with source terms.

Definition 2. The function f has an L1 exponential (weighted) tail of order s > 0 in [0, T ] if,

r̄s = sup
r>0

{
r: sup

0�t�T

∥∥f exp
(
r|ξ |s)∥∥

L1(Rn)
< +∞

}
, (7)

is positive.
In particular, for s = 2 we simply say that f has an L1-Maxwellian (weighted) bound.
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This definition is equivalent to that one used in [2] and [3] for the solution of the homogeneous Boltzmann equation.
Observe that the definition does not requires nonnegativity in the function f . This is important since the main purpose
of this paper is to study the derivatives of the solution of problem (1), functions that do not have sign.

We point out that Bobylev proved in [2] the propagation L1-Maxwellian tails for the hard sphere problem in three
dimensions. That is, he proved the existence of L1 exponential tail of order 2 for the solution of the homogeneous
Boltzmann equation provided the initial data has L1 exponential tail of order 2 the case is special in the sense that the
angular cross section function h(z) in (4) is constant. Recently, this result was extended was in [5] under the conditions
(i)–(ii) for the angular cross section, to further show that the tail behavior is in fact ‘pointwise’ for all times if initially
so. This fact motivates the following natural definition.

Definition 3. The function f has an L∞ exponential (weighted) tail of order s > 0 in [0, T ] if,

r̄s = sup
r>0

{
r: sup

0�t�T

∥∥f exp
(
r|ξ |s)∥∥

L∞(Rn)

}
< ∞, (8)

is positive.
In particular, for s = 2, we simply say that f has an L∞-Maxwellian (weighted) bound.

As it was just mentioned above, the elastic, space homogeneous Boltzmann equation for variable hard spheres
(i.e. α ∈ (0,1] in Eq. (4)) it has been shown that the solution has an L∞ exponential tail of order 2 in [0,∞). This
is a consequence of the rather strong fact that L1 exponential tail implies the L∞ exponential tail in the solution by
means of a result like Theorem 5 in Appendix A. Another example of the strong relation of L1 −L∞ exponential tails
is given in [8]. In this work the authors proved the existence of self-similar solutions for the inelastic homogeneous
Boltzmann equation with constant restitution coefficient. Using the results from [5], where it was shown proved that
an steady state of a self-similar solution must has all moments bounded and an L1 exponential tail of order 1, the
authors went further to show the existence of such steady states and that also it has an L∞ exponential tail of order 1.

We are ready to formulate the main result of this work after the introduction of the short notation for the Maxwellian
(i.e. exponential of order 2) weight,

Mr ≡ Mr(ξ) = exp
(−r|ξ |2) with r ∈ R.

Theorem 1. Let η any multi-index and assume that f0 ∈ H
|η|
(|η|−1)(1+α/2). In addition, assume that for all ν � η we

have that |∂νf0|/Mr0 ∈ L1 and |∂νf0|/{(1 + |ξ |2)|ν|/2Mr0} ∈ L∞ for some r0 > 0. Then, there exist r � r0 such that

sup
t�0

|∂νf |
(1 + |ξ |2)|ν|/2Mr

� Kη,r0 ,

for all ν � η, where Kη,r0 is a positive constant depending on η, r0 and the kernel h(·). In particular, for ν � η and
t > 0,

lim|ξ |→∞
∣∣∂νf (ξ, t)

∣∣ � Kη,r0 lim|ξ |→∞Mr̄ν
2
(ξ),

where the constant r̄ν
2 is given by (8) for the function ∂νf .

Remarks.

• In other words, if ∂νf0 has a L∞ exponential tail of order 2 for all ν � η, then the ν derivative of the solution will
propagate such behavior, that is the ∂νf (t, v) still has an L1 exponential tail of order 2. In addition, using related
arguments to the ones in [5], yields the propagation of L∞ exponential tails of order 2 for the ν derivative of the
solution, for all ν � η.

• It is clear that the property of having L1 or L∞ exponential tail is transparent to the polynomial weight that we
include. Indeed, a function has any of the previous properties if an only if the product of the function with a
polynomial also has the property. We include the weight in the statement of Theorem 1 since it appears naturally
for variable hard sphere kernels with an angular cross section function h(z) satisfying (i)–(ii), as the proof of the
theorem shows. In addition, emphasis has been done about the fact that the ν derivative of the solution is being
compared with the ν derivative of the Maxwellian.
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As it was noticed in [2] and [3], the existence of L1 exponential tails for a solution f of the space homogeneous
Boltzmann equation, is closely related to the existence of all its moments and its summability properties. Following
that line of work in the such of properties of such nature for ∂ηf , we also observe that

∫
Rn

∣∣∂ηf
∣∣ exp

(
r|ξ |s)dξ =

∞∑
k=0

δηmsk/2

k! rk.

Thus, in order to show that there is a the choice of s > 0 for which the summability of moments, or equivalently,
a bound for the right-hand side of (1) uniformly in time t , one would need to show that there exist positive constants
K and Q, independent of t , such that δηmsk/2/k! < KQk , k = 1,2,3, . . . . Hence, if that is the case, the sum in the
right-hand side of (1) converges choosing, uniformly in time, for any r such that 0 < r < 1/Q. This fact will imply
that the integral is finite and therefore r̄

η
s > 0.

Bobylev et al. in [2,3], proved that under precise conditions the moments of f satisfy estimates:

msk/2/k! < KQk uniformly in time for s = 2. (9)

This paper intends to do the same for δηmsk/2 as defined in (6).
Conversely, if the integral in the left-hand side is bounded on [0, T ] for some positive r, s, the terms in the sum

must be controlled in the form δηmsk/2/k! < KQk , k = 1,2,3, . . . for some constants K,Q > 0. Thus, the moments
δηmsk/2 with k = 1,2,3, . . . are uniformly bounded on [0, T ] if and only if ∂ηf has an L1 exponential tail of some
order s > 0 in [0, T ].

Before continuing with the technical work the reader may go to Appendix A, and see some of the classical results
known for a distributional solution f of (1) used throughout this work.

3. Sharp Povzner-type inequalities for the solution’s derivatives

The purpose of this section is to give technical lemmas regarding the derivative of the collision operator ∂ηQ(f,f ).
The idea of the following lemmas is to obtain expressions for this operator as close as possible to those already given
in [3] for Q(f,f ).

Lemma 1. Let f a sufficiently smooth function. Then, the following expressions hold for the positive and negative
parts of the collision operator:

∂ηQ±(f,f ) =
∑
ν�η

(
η

ν

)
Q±(

∂νf, ∂η−νf
)
.

In particular,

∂ηQ(f,f ) =
∑
ν�η

(
η

ν

)
Q

(
∂νf, ∂η−νf

)
.

Proof. This is a direct consequence of the invariance property τΔQ(f,f ) = Q(τΔf, τΔf ), where τΔ is the translation
operator defined by τΔg(ξ) = g(ξ − Δ), for ξ and Δ in R

n. For details see [12]. �
Next, we need a suitable form for the action of the derivative of the collision operator ∂νQ(f,f ) on test functions.

Lemma 2. Let f a sufficiently smooth function. Then, the action of the η derivative of the collision operator on any
test function φ is given by:∫

Rn

∂ηQ(f,f )φ dξ =
∫ ∫

Rn×Rn

f∗∂ηf A[φ]|u|α dξ∗ dξ

+ 1/2
∑

0<ν<η

(
η

ν

) ∫ ∫
n n

∂νf ∂η−νf∗A[φ]|u|α dξ∗ dξ, (10)
R ×R
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where

A[φ] = A+[φ] − A−[φ],
with

A+[φ] =
∫

Sn−1

(
φ′ + φ′∗

)
h(û · σ)dσ and A−[φ] = φ + φ∗. (11)

Proof. For f and g any smooth functions we have after the regular change of variables ξ → ξ ′,∫
Rn

Q+(f, g)φ dξ = 1

2

∫ ∫ ∫

Rn×Rn×Sn−1

(
fg∗φ′ + f∗gφ′∗

)
h(û · σ)dσ |u|α dξ∗ dξ. (12)

Also, using the change of variables ξ → ξ∗ the action of the negative collision part is given by:∫
Rn

Q−(f, g)φ dξ = 1

2

∫ ∫
Rn×Rn

(
fg∗φ + f∗gφ∗

)|u|α dξ∗ dξ. (13)

Now, using Lemma 1, ∫
Rn

∂ηQ+(f,f )φ dξ =
∑
ν�η

(
η

ν

)∫
Rn

Q+(
∂νf, ∂η−νf

)
φ dξ.

Let f ≡ ∂νf and g ≡ ∂η−νf in (12) to get:∫
Rn

∂νQ+(f,f )φ dξ = 1/2
∑
ν�η

(
η

ν

) ∫ ∫
Rn×Rn

∂νf ∂η−νf∗ A+[φ]|u|α dξ∗ dξ. (14)

Following the same idea, and using (13) and the renormalization of angular cross section:∫
Rn

∂ηQ−(f,f )φ dξ = 1/2
∑
ν�η

(
η

ν

) ∫ ∫
Rn×Rn

∂νf ∂η−νf∗A−[φ]|u|α dξ∗ dξ. (15)

Subtract (15) from (14) and split the total sum to conclude. �
The moments of the derivative of the collision operator need to be controlled in order to find a bound for the

moments of the solution’s derivatives. The following lemma is a first step in this direction.

Lemma 3. Assume φ � 0, then for any multi-index η:∫
Rn

∂ηQ(f,f ) sgn
(
∂ηf

)
φ dξ �

∫ ∫
Rn×Rn

f∗
∣∣∂ηf

∣∣A[φ]|u|α dξ∗ dξ + 2
∫ ∫

Rn×Rn

f∗
∣∣∂ηf

∣∣φ∗|u|α dξ∗ dξ

+ 1/2
∑

0<ν<η

(
η

ν

) ∫ ∫
Rn×Rn

∣∣∂νf ∂η−νf∗
∣∣A[φ]|u|α dξ∗ dξ

+
∑

0<ν<η

(
η

ν

) ∫ ∫
Rn×Rn

∣∣∂νf ∂η−νf∗
∣∣φ∗|u|α dξ∗ dξ. (16)

Proof. Let Ψ � 0 and φ = sgn(∂ηf )Ψ in Lemma 2. In one hand, observe that for the first term in (10)
|A+[sgn(∂ηf )Ψ ]| � A+[Ψ ], hence

∂ηf A+[
sgn

(
∂ηf

)
Ψ

]
�

∣∣∂ηf
∣∣A+[Ψ ],

on the other hand,

∂ηf A−[
sgn

(
∂ηf

)
Ψ

] = ∣∣∂ηf
∣∣A−[Ψ ] − Ψ∗

{∣∣∂ηf
∣∣ − sgn

(
∂ηf∗

)
∂ηf

}
.
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Gathering these two inequations we have:

∂ηf A
[
sgn

(
∂ηf

)
Ψ

]
�

∣∣∂ηf
∣∣A[Ψ ] + 2

∣∣∂ηf
∣∣Ψ∗. (17)

Note that (17) yields a control for the first term in (10) of Lemma 2. Moreover, a similar argument also works for the
second term in (10). �

Although the expression (16) may look cumbersome, we point out that the main idea here is to separate the terms
that depend on the actual derivative of order η from the lower order derivatives. In this way, it is possible to take
advantage of the expression (16) when an induction argument is used.

We are now ready to study the moments of the solution’s derivatives for p > 1. The idea is to follow the work [3]
adapting the results to this extended case. Several lemmas are needed before attempting to prove a time uniform
control on these moments. Let us first consider, in the following lemma, test functions of the form φp = |ξ |2p , with
p > 1. For a detailed proof see [3] for bounded angular cross section function h(z) and from [5] for h(z) satisfying
conditions (i)–(ii). Nevertheless, we present a slightly modified argument from the one in [5] to handle condition (ii):

Lemma 4. Under the previous assumptions on h(·), for every p � 1,

A[φp] = A
[|ξ |2p

]
� −(1 − γp)

(|ξ |2p + |ξ∗|2p
) + γp

((|ξ |2 + |ξ∗|2
)p − |ξ |2p − |ξ∗|2p

)
, (18)

where the constant γp is given by the formula:

γp = ωn−2

1∫
−1

(
1 + z

2

)p

h̄(z)
(
1 − z2) n−3

2 dz, (19)

with h̄(z) = 1
2 (h(z) + h(−z)). In particular, for ε = n − 1 − μ > 0,

lim
p→∞γp ∼ p−ε/2 ↘ 0, (20)

where μ is the growth exponent of condition (ii) on h(z).
Furthermore if h(z) is bounded, the following estimate holds for p > 1,

γp < min

{
1,

16π‖h‖∞
p + 1

}
.

Proof. It is easy to see that limp→∞ γp ↘ 0, since by conditions (i)–(ii) in h(z) it follows that γ1 is bounded. In
particular (

1 + z

2

)p

↘ 0 a.e. in (−1,1) as p → ∞,

so γp is decreasing on p. Using Lebesgue’s Dominated Convergence the decay of γp ↘ 0 follows.
However, using (ii) on h(z) we can say more about the decreasing rate of γp to zero. Since

h̄(z) � C
(
1 − z2)−μ/2

,

then

γp = ωn−2

1∫
−1

(
1 + z

2

)p

h̄(z)
(
1 − z2) n−3

2 dz � 2ε−1Cωn−2

1∫
0

sp+ε/2−1(1 − s)ε/2−1 ds

= 2ε−1Cωn−2β(p + ε/2, ε/2), (21)

where ε = n − 1 − μ > 0. Then we can estimate:

β(p + ε/2, ε/2) = �(p + ε/2)�(ε/2)

�(p + ε)
∼ p−ε/2 for large p.

It is concluded that γp ∼ p−ε/2 when p → ∞ and (20) holds. �
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Remarks.

• Lemma 4 is a sharp version of the so called Povzner inequalities. It is proved after a clever manipulation of the
post collision variables in the positive part of the collision operator. The convexity of h(·) plays an essential role
to conclude Lemma 4 because it provides a nondecreasing property to the action of the gain operator on convex
functions.

• For hard spheres h(û · σ) = 1/4π , hence γp < min{1, 4
p+1 }.

Lemma 5. Assume that p > 1, and let kp = [p+1
2 ]. Then for all x, y > 0 the following inequalities hold:

kp−1∑
k=1

(
p

k

)(
xkyp−k + xp−kyk

)
� (x + y)p − xp − yp �

kp∑
k=1

(
p

k

)(
xkyp−k + xp−kyk

)
. (22)

Remark. The binomial coefficient for a noninteger p is defined for k � 1 as(
p

k

)
= p(p − 1) · · · (p − k + 1)

k! , and

(
p

0

)
= 1. (23)

The following lemma is a consequence of the previous two results. It provides a control on the collision operator’s
moments of order p using moments of the solution’s derivatives of order strictly less that p.

Lemma 6. Assume h(z) fulfill all the conditions discussed, then for every p > 1 and multi-index η:∫
Rn

∂ηQ(f,f ) sgn
(
∂ηf

)|ξ |2p dξ � −(1 − γp)kαδηmp+α/2 + γpδηSp

+ δη−
(mα/2mp) + δη−

(m0mp+α/2), (24)

where kα is a positive constant depending on α but not on p.
In addition,

δηSp ≡
kp∑

k=1

(
p

k

){
δη(mkmp−k+α/2) + δη(mk+α/2mp−k)

}
with kp =

[
p + 1

2

]
,

and

δη−
(mα/2mp) + δη−

(m0mp+α/2) ≡ 2
∑
ν<η

(
η

ν

){
δη−νmα/2δ

νmp + δη−νm0δ
νmp+α/2

}
.

Remarks.

• The notation:

δη(mpmq) ≡
∑
ν�η

(
η

ν

)
δνmpδη−νmq and

δη−
(mpmq) ≡

∑
ν<η

(
η

ν

)
δνmpδη−νmq, (25)

has been chosen so that the “product rule of differentiation” holds. Expression (24) makes it clear that this notation
is very convenient to maintain the length of expressions short and at the same time easy to remember. The minus
sign next to the upper script η in the last term of (24) was introduced to stress the fact that the sum is done on the
multi-index ν < η.

• Observe that none of the two last terms in (24) depends on δηmp+α/2 for p > 1. This is important for the induction
arguments used later on.
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Proof. Let φ = |ξ |2p in Lemma 3. The sum of terms two and four in the right-hand side of (16) is bounded by
δη−

(mα/2mp) + δη−
(m0mp+α/2). Indeed, use the inequality |u|α � |ξ |α + |ξ∗|α , which is valid for α ∈ (0,1], expand

the integrals, and use the definition of moments of the derivatives (6) to conclude directly.
Recall the inequality, found in [1] or [5, Lemma 7], valid for solutions of the Boltzmann equation with finite mass,

energy and entropy, ∫
Rn

f∗|u|α dξ∗ � kα|ξ |α, (26)

where the constant kα depends, in addition to α, on the mass, energy and entropy of the initial datum f0. Thus, it
follows that ∫ ∫

Rn×Rn

f∗
∣∣∂ηf

∣∣(|ξ |2p + ∣∣ξ2p∗
∣∣)|u|α dξ∗ dξ �

∫ ∫
Rn×Rn

f∗
∣∣∂ηf

∣∣|ξ |2p|u|α dξ∗ dξ � kαδηmp+α/2. (27)

Use (27), Lemmas 4 and 5, to control the first term in the right-hand side of (16),∫ ∫
Rn×Rn

f∗
∣∣∂ηf

∣∣A[φ]|u|α dξ∗ dξ

� −(1 − γp)kαδηmp+α/2 + γp

kp∑
k=1

(
p

k

)
δηmk+α/2mp−k

+ δηmp−kmk+α/2 + δηmkmp−k+α/2 + δηmp−k+α/2mk.

Similarly, the following control is obtained for the third term of (16),

∑
0<ν<η

(
η

ν

) ∫ ∫
Rn×Rn

∣∣∂νf ∂η−νf∗
∣∣A[φ]|u|α dξ∗ dξ

� γp

kp∑
k=1

(
p

k

) ∑
0<ν<η

(
η

ν

)
δνmk+α/2δ

η−νmp−k + δνmp−kδ
η−νmk+α/2

+ δνmkδ
η−νmp−k+α/2 + δνmp−k+α/2δ

η−νmk.

Combining these two inequalities, the sum of first and third term of (16) is bounded by:

−(1 − γp)kαδηmp+α/2 + γpδηSp.

This concludes the proof. �
Let us introduce the normalized moments, which are defined as

δηzp ≡ δηmp/�(p + b), (28)

where �(·) is the gamma function and b > 0 is a free parameter to be chosen in the sequel. These moments can be
used to simplify the estimate obtained in Lemma 6.

Lemma 7. For every p > 1 and multi-index η,

δηSp � A�(p + α/2 + 2b)δηZp,

where

δηZp = max
1�k�kp

{
δη(zkzp−k+α/2), δ

η(zk+α/2zp−k)
}
, (29)

and A > 0 is a constant depending only on b.
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Proof. The proof is identical to that of Lemma 4 in [3]. First observe that

δηSp =
kp∑

k=1

(
p

k

)
�(k + b)�(p − k + α/2 + b)δη(zkzp−k+α/2)

+ �(k + α/2 + b)�(p − k + b)δη(zk+α/2zp−k).

But the Beta and Gamma functions are related by:

β(x, y) = �(x)�(y)

�(x + y)
.

This allow us to reduce the right-hand side in the previous equality to:

�(p + α/2 + 2b)

kp∑
k=1

(
p

k

)
β(k + b,p − k + α/2 + b)δη(zkzp−k+α/2)

+ β(k + α/2 + b,p − k + b)δη(zk+α/2zp−k).

Therefore,

δηSp � �(p + α/2 + 2b)δηZp

kp∑
k=1

(
p

k

)
β(k + b,p − k + α/2 + b) + β(k + α/2 + b,p − k + b). (30)

Using the definition of the Beta function it is possible to control the sum in (30) by constant A depending only on b,
for details of this last step see [3, Lemma 4]. �

We are ready to construct the system of differential inequalities used in the proof of Theorem 2. The following
lemma is a direct application of Lemmas 6 and 7 on the Boltzmann equation (1).

Lemma 8. Let η any multi-index and assume that δηm0 > 0 and δνm0, δ
νmα/2 uniformly bounded on time for all

ν � η, then

d(δηzp)

dt
+ (1 − γp)kα�(p + b)α/2pδηm

−α/2p

0

(
δηzp

)1+α/2p

� γpk0p
α/2+bδηZp + k1p

α/2δη−
(m0zp+α/2) + δη−

(mα/2zp), (31)

for all p > 1, with k1 > 0 universal constant, k0 > 0 depending only on b and kα given in Lemma 6.

Proof. First, note that using Jensen’s inequality:

δηmp+α/2 � δηm
−α/2p

0 δηm
1+α/2p
p .

Next, take the η derivative in velocity in both sides of the Boltzmann equation (1), then multiply it by sgn(∂ηf )|ξ |2p

and integrate in velocity, then, use Lemma 6 to obtain:

d(δηmp)

dt
+ (1 − γp)kαδηm

−α/2p

0

(
δηmp

)1+α/2p � γpδηSp + {
δη−

(mp+α/2m0) + δη−
(mpmα/2)

}
.

Use the definition of δηzp in the previous inequality, and combine it with Lemma 7 to get:

d(δηzp)

dt
+ (1 − γp)kα�(p + b)α/2pδηm

−α/2p

0

(
δηzp

)1+α/2p

� γpK
�(p + α/2 + 2b)

�(p + b)
δηZp + �(p + α/2 + b)

�(p + b)
δη−

(m0zp+α/2) + δη−
(mα/2zp).

For the terms involving Gamma functions use the asymptotic formulas for large p,

�(p + α/2 + 2b)

�(p + b)
∼ pα/2+b,

�(p + α/2 + b)

�(p + b)
∼ pα/2,

to find the right polynomial grow. �
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Remark. Lemma 8 is the equivalent result to Lemma 6.2 in [2]. Differential inequalities (31) have the additional
complication that they are not of constant coefficients since δηm0, unlike m0, is in general a function of t .

The following classical result on ODE’s helps to implement an induction argument on inequalities of the form
(33)–(34).

Lemma 9. Let a and b positive continuous functions in t such that

a∗ = inf
t>0

a > 0, b∗ = sup
t>0

b < +∞,

and let c a positive constant. In addition assume that y � 0 ∈ C1([0,∞)) solves the differential inequality:

y′ + ay1+c � b, y(0) = y0, (32)

then y � max{y0, (b∗/a∗)1/(1+c)}.

Proof. Since y′ +a∗y1+c � b∗, it suffices to prove the lemma in the case that a and b are positive constants. As a first
step assume equality in (32). Thus, from classical theory of differential equations this ODE has a unique C1 solution
y∗ with the property stated by the lemma, i.e.

y∗ � max
{
y0, (b/a)1/(1+c)

}
.

If y ∈ C([0,∞)) solves (32) we claim that y � y∗. Assume that there exist T ′ > 0, where the inequality
y(T ′) > y∗(T ′) holds. Let T < T ′ such that y(T ) = y∗(T ) and y > y∗ in (T ,T ′). The existence of such a point
is assured by the continuity of the functions in addition to the fact that y(0) = y∗(0) = y0. Therefore,

T ′∫
T

y′ = y(T ′) − y(T ) > y∗(T ′) − y∗(T ) =
T ′∫

T

y′∗.

Hence, there exist T0 ∈ (T ,T ′) such that y′(T0) > y′∗(T0). Thus, the inequalities,

b − y(T0)
1+c � y′(T0) > y′∗(T0) = b − y∗(T0)

1+c,

hold. Consequently, it is concluded that y(T0) < y∗(T0) which is a contradiction. As a result, y � y∗. This proves the
lemma. �
Remark. Same argument proves a similar result for y � 0 ∈ C1([0,∞)) solving the differential inequality
y′ + ay1+c � dy + b with a, b and d positive function on t (satisfying similar hypothesis) and c a positive constant.
Of course the bound slightly changes to y � max {y0, ȳ} where point ȳ is given by the equation a∗ȳ1+c = d∗ȳ + b∗.
Here d∗ = supt>0 d .

Next result relate the last two lemmas and gives some orientation of the future application of Lemma 9.

Corollary 1. Inequalities (31) can be written for p = 3/2 as

d(δηz3/2)

dt
+ a3/2

(
δηz3/2

)1+c3/2 � b3/2 + d3/2
(
δηz3/2

)
, (33)

and for p ∈ {2,5/2,3, . . .} as,

d(δηzp)

dt
+ ap

(
δηzp

)1+cp � bp, (34)

where ap , bp , cp and d3/2 � 0 are positive functions on t and b for p ∈ {3/2,2,5/2, . . .}, and more importantly, they
are independent of the normalized moment δηzp .
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Proof. The expressions for ap and cp can be found by comparison between (33)–(34) and (31):

ap(t) = (1 − γp)kα�(p + b)α/2pδηm
−α/2p

0 and cp = α/2p. (35)

Clearly they are positive functions of t and independent of δηzp . For p = 3/2 the short expression for δηZp is
obtained:

δηZ3/2 = max
{
δη(z1z(1+α)/2), δ

η(z1+α/2z1/2)
}

� δη(z1z(1+α)/2) + δη(z1+α/2z1/2)

= δη(z1z(1+α)/2) + δη−
(z1+α/2z1/2) + z1/2δ

ηz1+α/2.

But note that for α ∈ (0,1],
δηz1+α/2 � 1 + δηz3/2. (36)

Therefore, this together with Lemma 8 leads to (33) with,

d3/2(t) = γ3/2k0(3/2)α/2+bz1/2(t) and

b3/2(t) = γ3/2k0(3/2)α/2+b
{
δη(z1z(1+α)/2) + δη−

(z1+α/2z1/2) + z1/2
}

+ k1(3/2)α/2δη−
(m0z(3+α)/2) + δη−

(mα/2z3/2). (37)

For p ∈ {2,5/2,3, . . .} it is clear that for 1 � k � kp the subindexes k, p − k + α/2, k + α/2 and p − k used in the
definition of δηZp are all strictly less that p. Hence the term δηZp do not depend on δηzp . Therefore the expression
(34) follows if we select:

bp(t) = γpk0p
α/2+bδηZp + {

k1p
α/2δη−

(m0zp+α/2) + δη−
(mα/2zp)

}
. (38)

Recall in Eq. (38) that the functions δη−
(m0mp+α/2) and δη−

(mα/2mp) depend on lower derivatives moments. �
4. Main results

Theorem 2 states that if the initial moments of the derivatives of any order are finite, they will continue finite
through time. Moreover, these moments are controlled by the initial datum in a specific way. The result is an extension
of Bobylev work, Theorem 4(1), which assures this behavior for the regular p-moments.

Theorem 2. Let η any multi-index and assume that δηm0 > 0, and δνm0, δ
νm1 uniformly bounded in [0, T ] for T > 0

and all ν � η. Also assume that for some constants k > 0 and q � 1 the initial renormalized moments of the solution’s
derivatives satisfy the grow condition on p:

δνzp(0) � kqp, p = 3/2,2,5/2, . . . .

Then we have the following uniform bound for the renormalized moments on t ∈ [0, T ]:
δνzp(t) � KQp, p = 3/2,2,5/2, . . . (39)

for all ν � η, some Q � q and a positive constant K = K(η,‖f ‖
L∞([0,T ];W |η|,1

2 )
, k) depending on the multi-index η,

the constant k, and on the L∞([0, T ];W |η|,1
2 ) norm of f .

Proof. Argue by induction on the multi-index order |η|. The case |η| = 0 follows from a direct application of Bobylev
work [2] for the hard spheres case (α = 1) or Gamba–Panferov–Villani work [5] for the general hard potential case
α ∈ (0,1), see Theorem 4(1) on Appendix A.

Thus, the induction hypothesis (IH) reads: Assume that Theorem 2 is true for any multi-index ν with |ν| < |η|,
therefore there exists K1 > 0 and Q � q depending on different parameters as stated above, such that for t ∈ [0, T ]
and |ν| < |η|,

δνzp(t) � K1Q
p for p � 1.

The purpose of the rest of the proof is to prove that

δηzp(t) � KQp for p = 1,3/2,2,5/2, . . .
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for some K > 0. Recall the parameters ap and bp with p ∈ 3/2,2,5/2, . . . defined explicitly in the proof Corollary 1.
The idea is to use induction on p to show that the quotient ap/bp is bounded by KQp and conclude by using
Lemma 9.

Define:

a
p∗ ≡ inf

t∈[0,T ]ap(t) = ∥∥δηm0
∥∥−α/2p

L∞[0,T ](1 − γp)�(p + b)α/2p. (40)

Observe that due to the induction hypothesis (IH),

δη−(m0zp+α/2) � 2|η|K1 ‖f ‖
L∞([0,T ];W |η|,1

1 )
Qp+α/2, and

δη−(mα/2zp) � 2|η|K1 ‖f ‖
L∞([0,T ];W |η|,1

1 )
Qp,

where we have used the control of the moments 0 and α/2 of the η derivative of f provided by the L∞([0, T ];W |η|,1
1 )

norm of f : ∑
i=1,α/2

max
ν�η

{∥∥δνmi

∥∥
L∞[0,T ]

}
� ‖f ‖

L∞([0,T ];W |η|,1
1 )

.

Hence, for p ∈ 2,5/2,3, . . .

bp(t) � γpk0p
α/2+bδηZp + 2|η|K1‖f ‖

L∞([0,T ];W |η|,1
1 )

Qp
{
k1Q

α/2pα/2 + 1
}
. (41)

Substitute (40) and (41) in (34) to conclude that

d(δηzp)

dt
+ a

p∗
(
δηzp

)1+α/2p � γpk0p
α/2+bδηZp + 2|η|K1‖f ‖

L∞([0,T ];W |η|,1
1 )

Qp
{
k1Q

α/2pα/2 + 1
}
. (42)

Next, define the following sequences of p:

A1
p = k0γppα/2+b

a
p∗

and A2
p = 2|η|K1‖f ‖

L∞([0,T ];W |η|,1
1 )

k1Q
α/2pα/2 + 1

a
p∗

,

in this way Eq. (42) can be written as

d(δηzp)

dt
+ a

p∗
(
δηzp

)1+α/2p � a
p∗A1

pδηZp + a
p∗A2

pQp. (43)

Let us, for the moment, divert our attention from Eq. (43) and make an observation regarding the sequences {A1
p} and

{A2
p}. Recall the asymptotic formula for �(p + b) with b > 0,

�(p + b)α/2p ∼ pα/2 for large p,

also recall that in the prove of Lemma 4,

γp ∼ p−ε/2 for large p.

Therefore, by letting b − ε/2 < 0 we have,

A1
p ∼ pb−ε/2 → 0 as p → ∞.

Meanwhile, the sequence {A2
p} is bounded. Define:

∣∣A2
p

∣∣∞ ≡ sup
p�2

A2
p < ∞.

Thus, there exists p0 such that

2|η|K1Q
α/2A1

p � 1/2 if p � p0.

Now, it is claimed that it is possible to take a number K � max{1, k,K1,2|A2
p|∞} such that

δηzp(t) � KQp for p = 3/2,2,5/2 . . . and p � p0. (44)
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Let us prove that this K actually exists by arguing as follows: When p = 3/2,

δηZp = max
{
δη(z1z(1+α)/2), δ

η(z1+α/2z1/2)
}
.

In the one hand, by hypothesis,

δη(z1z(1+α)/2) � 2|η|

�((1 + α)/2 + b)
‖f ‖2

L∞([0,T ];W |η|,1
2 )

< +∞,

and, in the other hand, by (IH):

δη(z1+α/2z1/2) � 2|η|K1Q
1+α/2

�(1/2 + b)

(
1 + δηz1+α/2

)‖f ‖
L∞([0,T ];W |η|,1

1 )

� 2|η|K1Q
1+α/2

�(1/2 + b)

(
2 + δηz3/2

)‖f ‖
L∞([0,T ];W |η|,1

1 )
.

Combine these bounds with the definitions for b3/2 and d3/2 in Corollary 1 and apply Lemma 9 to find that
δηz3/2 is bounded. But once δηz3/2 is bounded, δηZ2 is immediately bounded and hence, by a new application of
Lemma 9 on (43) for p = 2, δηz2 is bounded. Repeat this process up to p0 to find that δηzp(t) is bounded for
p = 3/2,2,5/2, . . . , p0. So it is just a matter of choosing K > 0 sufficiently large so that (44) is fulfill.

Let us argue by induction on the integrability index p to show that the same constants K and Q also hold for
p > p0 with p ∈ {3/2,2, . . .}. Assume that (44) holds. Hence, observing that the term δηZp does not depend on δηzp

for p > 3/2 and using (IH) one concludes that

δηZp < 2|η|K1KQp+α/2.

Therefore, inequality (43) reads for p > p0:

d(δηzp)

dt
+ a

p∗
(
δηzp

)1+α/2p � 2|η|ap∗A1
pK1KQp+α/2 + a

p∗A2
pQp = b

p∗ , (45)

thus by Lemma 9

δηzp(t) � max
{(

b
p∗ /a

p∗
)2p/(2p+α)

, δηzp(0)
}
.

But the condition p > p0 and the choice of K implies that

bp(t)/ap(t) � b
p∗ /a

p∗ =
{

2|η|A1
pK1Q

α/2 + A2
p

K

}
KQp � KQp for p > p0.

Since same inequality holds for p � p0 one concludes that

δηzp � max
{
KQp,kqp

} = KQp for p = 1,3/2,2, . . . .

This completes the proof. �
Remarks.

• For any p > 1 a simple Lebesgue interpolation argument together with Theorem 2 shows that δηzp � KηQ
p .

• The growing constant q for the initial datum is in general smaller that the one obtained for the differential mo-
ments. Thus, the control on the differential moments may worsen depending on the initial conditions.

• The following is a different way to state Theorem 2: Let η any multi-index and assume that f0 ∈ L1
2 and

f ∈ L∞([0, T ];W |η|,1
2 ), if for some r0 > 0 we have that

∫
Rn |∂νf0| exp(r0|ξ |2) dξ < ∞ for all ν � η, then

sup
[0,T ]

{∫
Rn

∣∣∂νf
∣∣ exp

(
r|ξ |2)dξ

}
< ∞,

for some r � r0 and all ν � η.
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Lemmas 10 and 11 prove that, for a solution of Boltzmann equation f , the differential moments δνm0 and δνm1
are uniformly bounded on time for ν � η , provided we have sufficient regularity in the initial datum f0. In other
words, given sufficient regularity on f0 we should have that f ∈ L∞([0, T ];W |η|,1

2 ).

Lemma 10. Let η any multi-index and suppose that f0 ∈ W
|η|,1
2+α , then for any T ∈ (0,∞), we have that

f ∈ L∞([0, T ];W |η|,1
2+α ). Moreover, δηm0(t) > 0 always holds.

Proof. First note that if δηm0(t
′) = 0 for some fixed t ′ > 0, we have that ∂ηf (ξ, t ′) = 0. Therefore f (ξ, t ′) would be

a polynomial in the variables ξi with i = 1,2, . . . , n. Hence f (ξ, t ′) would not be integrable unless f (ξ, t ′) = 0. But
0 = ‖f (·, t ′)‖L1 = ‖f0‖L1 due to mass conservation. This is impossible for a nonzero initial datum.

Next, since A[1] = 0 and A[|ξ |2] � 0, one uses Lemma 3 to obtain the following inequalities:

1/2
d(δηm0)

dt
� δηm0mα/2 + δηmα/2m0 +

∑
0<ν<η

(
η

ν

)(
δνmα/2δ

η−νm0 + δνm0δ
η−νmα/2

)
,

and

1/2
d(δηm1)

dt
� δηm0m1+α/2 + δηmα/2m1 +

∑
0<ν<η

(
η

ν

)(
δνmα/2δ

η−νm1 + δνm0δ
η−νm1+α/2

)
. (46)

We can now conclude the proof by using inequality (46) in order to implement an induction argument on the
index order |η|. Note that for the case |η| = 0, the conservation of mass and dissipation of energy implies that
f ∈ L∞([0, T ];L1

2). In addition, since f0 ∈ L1
2+α , the moment 1 + α/2 is finite in the initial datum, then we must

have that this moment is uniformly bounded in time, for this is precisely the work of Gamba–Panferov–Villani [5].
Hence, f ∈ L∞([0, T ];L1

2+α).

For |η| > 0, take f0 ∈ W
|η|,1
2+α and assume that the result is valid for all |ν| < |η|. Since W

|η|,1
2+α ⊂ W

|ν|,1
2+α then

f0 ∈ W
|ν|,1
2+α , thus by induction hypothesis we have that f ∈ L∞([0, T ];W |ν|,1

2+α ) for all |ν| < |η|. Therefore, δνm0,
δνm1 and δνm1+α/2 are uniformly bounded on [0, T ] as long as |ν| < |η|. Note that

δηmα/2 � δηm0 + δηm1.

As a result, inequalities (46) imply that δηm0 and δηm1 are uniformly bounded on [0, T ], i.e. f ∈ L∞([0, T ];W |η|,1
2 ).

But δηm1+α/2(0) is finite by hypothesis, thus we can apply Theorem 2 again to get that δηm1+α/2(t) is finite in [0, T ].
We conclude that f ∈ L∞([0, T ];W |η|,1

2+α ). �
Lemma 11 shows that it is possible to go further and obtain a global in time result for the elastic case, provided

that more regularity on f0 is imposed.

Lemma 11. Let η any multi-index and assume that f0 ∈ W
|η|,1
2+α ∩ H

|η|
(|η|−1)(1+α/2)

then f ∈ L∞(R+;W |η|,1
2+α ).

Proof. In the one hand, for all multi-index ν satisfying ν � η we have by Cauchy–Schwarz inequality that

δνmp � Cs,n‖f ‖
H

|η|
2p+s/2

,

for any s > n and some constant Cs,n depending on s and the dimension n. Therefore, by letting p = 1 + α/2 we
obtain:

max
ν�η

{
δνm0(t), δ

νm1(t), δ
νm1+α/2(t)

}
� Cs,n

∥∥f (t, ·)∥∥
H

|η|
2+α+s/2

.

Then, using Theorem 6 in Appendix A,

sup
t�t0

{
max
ν�η

{
δνm0(t), δ

νm1(t), δ
νm1+α/2(t)

}}
< +∞.

On the other hand, the differential moments are bounded for t � t0 by Lemma 10 under these assumptions on f0.
Hence, they are bounded uniformly for all t > 0. As a result, f ∈ L∞(R+;W |η|,1

). �
2+α
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The results of Theorem 2, Lemmas 10 and 11 can be readily used to obtain the L1-Maxwellian bound for derivatives
of any order.

Theorem 3. Let η any multi-index and assume that f0 ∈ W
|η|,1
2+α . In addition, assume the grow condition on the initial

moments,

δνmp(0)/p! � kqp

for p � 3/2, all ν � η and some positive constants k and q . Then, ∂νf has exponential tail of order 2 in [0, T ] for
ν � η and T ∈ (0, T ). Moreover, if we additionally assume f0 ∈ H

|η|
(|η|−1)(1+α/2) then the conclusion can be extended

to T = +∞.

Proof. Fix T ∈ (0,∞) and observe that using Lemma 10 it is possible to conclude that f ∈ L∞([0, T ];W |η|,1
2+α ).

From this follows that the moments δνm0 and δνm1 are bounded in [0, T ] for all ν � η. Therefore, the conditions of
Theorem 2 are fulfilled and we can use it to conclude that for all ν � η the following inequality holds in [0, T ]:∫

Rn

∣∣∂νf
∣∣er|v|2 dv =

∑
i

δνmi

i! ri � K
∑

i

�(i + b)

�(i + 1)
(Qr)i , (47)

where Q � q and K > 0 are constants that depend on different parameters as discussed in Theorem 2. But,

�(i + b)

�(i + 1)
∼ ib−1 for large i.

Consequently, the sum behave like: ∑
i

ib−1(Qr)i .

Thus, it suffices to choose r > 0 such that Qr < 1 so that the sum in (47) converges.
Use the assumption that f0 ∈ H

|η|
(|η|−1)(1+α/2) and apply Lemma 11 to extend the result to the limit case T =

+∞. �
Remark.

• As a final remark on Theorem 2, Lemmas 10 and 11, observe that for any multi-index η and k � 2+α, Theorem 2
implies that if f0 ∈ W

|η|,1
k , then f ∈ C([0, T ];W |η|,1

k ) for any T < ∞. For the elastic case T = ∞ is also allowed,

provided we have that f0 ∈ H
|η|
(|η|−1)(1+α/2).

5. Proof of Theorem 1

In order to simplify the notation set Q−(f, g) = f · L(g), where

L(g) =
∫
Rn

g∗|ξ − ξ∗|α dξ∗.

Proof. Differentiate Eq. (1) η times in velocity and multiply the result by sgn(∂ηf ) to obtain:

∂t

(∣∣∂ηf
∣∣) + ∣∣∂ηf

∣∣L(f ) � Q+(∣∣∂ηf
∣∣, f ) + Q+(

f,
∣∣∂ηf

∣∣) + f · L(∣∣∂ηf
∣∣)

+
∑

0<ν<η

(
η

ν

){
Q+(∣∣∂νf

∣∣, ∣∣∂η−νf
∣∣) + Q−(∣∣∂νf

∣∣, ∣∣∂η−νf
∣∣)}. (48)

We use Eq. (48) to argue by induction on the index order |η|. The case |η| = 0 follows directly from Theorem 4(2).
Next, let f0 fulfilling all the conditions of the theorem and assume the result for |ν| < |η|. Then, there exists r ′ � r0

such that for any |ν| < |η|,
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∣∣∂νf
∣∣ � K1

η,r0

(
1 + |ξ |2)|ν|/2

Mr ′,

where K1
η,r0

is a positive constant depending on η and r0.

By hypothesis, |∂νf0|/Mr0 ∈ L1 for all ν � η. Thus, the grow condition required in Theorem 3 on the derivative
moments of the initial datum f0 is satisfied, namely, that for some positive constants k and q ,

δνmp(0)/p! � kqp forp � 0.

Furthermore, f0 ∈ H
|η|
(|η|−1)(1+α/2), as a result, Theorem 3 applies to obtain that for some r ′′ � r0,

sup
t�0

∫
Rn

∣∣∂νf
∣∣ exp

(
r ′′|ξ |2)dξ = sup

t�0

∥∥∂νf/Mr ′′
∥∥

L1 < ∞, (49)

for all ν � η. Indeed, recall that in Theorem 2 a bigger grow constant Q � q was obtained for controlling the deriva-
tive’s moments through time. Hence, previous integral must converge in general for r ′′ � r0.

Let r = min{r ′, r ′′} and divide inequality (48) by Mr . Using the induction hypothesis we can bound the derivatives
of lower order in (48) to get the inequality:

∂t

(∣∣∂ηf
∣∣/Mr

) + ∣∣∂ηf/Mr

∣∣L(f ) �
K1

η,r0

Mr

{
Q+(∣∣∂ηf

∣∣,Mr

) + Q+(
Mr,

∣∣∂ηf
∣∣)} + K1

η,r0
L

(∣∣∂ηf
∣∣)

+ K1
η,r0

Mr

∑
0<ν<η

(
η

ν

)
Q+((

1 + |ξ |2)|ν|/2
Mr,

∣∣∂η−νf
∣∣)

+ Q−((
1 + |ξ |2)|ν|/2

Mr,
∣∣∂η−νf

∣∣).
Use Theorems 5 and 6 in Appendix A, to obtain the following L1 control from the previous inequality

∂t

(∣∣∂ηf
∣∣/Mr

) + ∣∣∂ηf/Mr

∣∣L(f ) � K2
η,r0

(
1 + |ξ |2)(|η|−1)/2 ∑

0<ν�η

(
η

ν

)∥∥∂νf/Mr

∥∥
L1 + L

(∣∣∂νf
∣∣), (50)

where K2
η,r0

> 0 is a constant depending on η, r0 and on the kernel b(·), as Theorem 5 states.
However, observe that for all ν

L
(∣∣∂νf

∣∣) � |ξ |αδνm0 + δνmα/2 � Const.
∥∥∂νf/Mr

∥∥
L1

(
1 + |ξ |2)α/2 � Const.

∥∥∂νf/Mr

∥∥
L1

(
1 + |ξ |2)1/2

.

Therefore, combining this inequality with by (49) we conclude that the right-hand side of (50) is bounded by
K3

η,r0
(1 + |ξ |2)|η|/2. Specifically,

∂t

(∣∣∂ηf
∣∣/Mr

) + ∣∣∂ηf/Mr

∣∣L(f ) � K3
η,r0

(
1 + |ξ |2)|η|/2

. (51)

Fix t0 > 0 and integrate (51) over [0, t0]. It follows that for any t ∈ [0, t0]:∣∣∂ηf
∣∣/Mr � K3

η,r0
t0

(
1 + |ξ |2)|η|/2 + ∣∣∂ηf0

∣∣/Mr � K4
η,r0

t0
(
1 + |ξ |2)|η|/2

,

where K4
η,r0

is a positive constant that depends on η, r0 and the kernel h(·).
For t > t0 use the lower bound that provides Theorem 4(3) in Appendix A to conclude that C ≡ infξ,t�t0 L(f ) > 0,

thus using the full differential inequality (51):∣∣∂ηf
∣∣/Mr � max

{
C−1K3

η,r0

(
1 + |ξ |2)|η|/2

,
∣∣∂ηf0

∣∣/Mr

}
� K5

η,r0

(
1 + |ξ |2)|η|/2

.

Therefore, Kη,r0 = max{K4
η,r0

· t0,K5
η,r0

} provides a sufficiently large constant for any t � 0. Since it is possible to fix
any time t0 to perform these calculations, this constant just depends on η, r0 and the kernel h(·). �
Remarks.

• If assumption f0 ∈ H
|η|
(|η|−1)(1+α/2) is not imposed, Theorem 1 is still valid changing in the conclusion “supt�0” for

“sup0�t�T ” with T finite. This is a direct consequence of the fact that Theorem 3 is valid under these conditions
for any finite time T .
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• Take as hypothesis of Theorem 1 only that f0 ∈ H
|η|
(|η|−1)(1+α/2) and

∣∣∂νf0
∣∣/{(1 + |ξ |2)|ν|/2

Mr0

} ∈ L∞,

for ν � η and some positive r0. Since for any r ′ ∈ (0, r0) the last hypothesis implies that |∂νf0|/Mr ′ ∈ L1, and∣∣∂νf0
∣∣/{(1 + |ξ |2)|ν|/2

Mr ′
} ∈ L∞,

for all ν � η. Thus, using Theorem 1, there exist r � r ′ < r0 such that

sup
t�0

|∂νf |
(1 + |ξ |2)|ν|/2Mr

� Kη,r ′ .

• Mischler et al. [7] proved that for inelastic collisions the solution of the problem (1) converges to the Dirac delta
distribution as the time goes to infinity (see [7]). This is a consequence of the energy loss and therefore the cooling
process that is taking place in the gas. Thus, for this case, it is not possible to obtain results like Theorem 1 which
involve bounds that are uniformly bounded in time for the solution f . In the elastic case, the gas does not have
this cool down phenomena hence uniform bounds on the derivatives can be proved in [0,∞).
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Appendix A. Facts for a solution f of the homogeneous Boltzmann problem

The homogeneous Boltzmann problem for hard and Maxwellian potentials is nowadays pretty well understood, in
addition to existence and uniqueness of solutions [6] many other results are available like positive estimates [11] and
propagation of regularity [10]. The most useful results used in this work are stated by the following theorems:

Theorem 4. Assume that f0 and h(·) have the properties discussed in the introduction and that α ∈ (0,1]. Then the
following properties holds for a solution f of the elastic homogeneous Boltzmann problem:

(1) If f0 satisfies
∫

Rn f0 exp(r0|ξ |2) dξ < ∞ for some r0 > 0, then there exist r � r0 such that
supt�0

∫
Rn f exp(r|ξ |2) dξ < ∞.

(2) If f0 � K0 exp(−r0|ξ |2) for some K0, r0 > 0 then there exist r � r0 such that f � K exp(−r|ξ |2) for all t � 0
and some positive constants K .

(3) For every t0 > 0 there are positive constants K,r0 such that f (t, ξ) � K exp(−r0|ξ |2) for all t � t0.

These are precisely the results that we want to extend for the derivative of f and their proof can be found in [3] for
item (1), also [5] for item (2) and [11] for item (3). Of course item (3) is not true in general for |∂ηf |, for example,
as shown by a Maxwellian solution, the gradient can be in general zero in some points of the velocity space at a
given time. However, this result will prove to be helpful in showing pointwise bounds for the derivatives of a solution.
Observe also that in items (1) and (2) in Theorem 4 the rate of decay r0 that controls f0 is worsen in general to r � r0
for controlling f .

Next, we state a remarkable result essential to prove item (2) in the previous theorem, in particular, essential to
control the gain collision operator.

Theorem 5. Assume B(u,σ ) = |u|αh(û ·σ) with h(·) satisfying the conditions stated in the introduction. Then for any
measurable function g � 0, ∥∥∥∥Q+(g,Mr)

Mr

∥∥∥∥
L∞

� K

∥∥∥∥ g

Mr

∥∥∥∥
L1

,

for some positive constant K depending on α and r .
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As usual in the L∞ bounds for Q+(f,f ), this result is a direct application of the Carleman representation formula
and clever manipulations of it. This theorem is very helpful when we try to prove an L∞ bound for the derivatives
of f . The proof of Theorem 5 can be found on [5, Lemma 12].

It is clear that same result holds for Q+(Mr, g), moreover, and slightly modification of the proof can be used to
obtain the following theorem:

Theorem 6. Assume B(u,σ ) = |u|αh(û · σ) with h(·) satisfying the conditions stated in the introduction, then for any
measurable function g � 0, ∥∥∥∥Q+(g, (1 + |ξ |2)sMr)

(1 + |ξ |2)sMr

∥∥∥∥
L∞

� K

∥∥∥∥ g

Mr

∥∥∥∥
L1

,

for any s > 0 and some positive constant K depending on s, α and β .

Finally, a powerful result proved by Mouhot and Villani [10, Theorem 4.2] is also used. This result helps to obtain
uniform bounds for infinite time for the derivative’s moments. A small piece of this theorem, which is the one of use
for us, is stated below.

Theorem 7. Let α ∈ (0,2), s ∈ N and assume that f0 ∈ L1
2 ∩ Hs

(s−1)(1+α/2)
. Then for any t0 > 0 and k > 0,

sup
t�t0

∥∥f (t, ·)∥∥
Hs

k
< +∞.

This quantity depends on an upper bound on L1
2 and Hs

(s−1)(1+γ /2) norms of f0 and a lower bound on t0.

The proof of this theorem is rather technical and requires several previous results on the control of the positive
collision operator including the gain of regularity of the positive operator, however its spirit is, as in this work, to find
a stable differential equation for the Hs norm of f and proceed by induction.
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