18 research outputs found

    Donor Cell Acute Myeloid Leukemia after Hematopoietic Stem Cell Transplantation for Chronic Granulomatous Disease: A Case Report and Literature Review

    Get PDF
    The patient reported here underwent hematopoietic stem cell transplantation (HSCT) due to chronic granulomatous disease (CGD) caused by biallelic mutations of the NCF1 gene. Two years later, he developed AML, which was unexpected and was recognized via sex-mismatched chromosomes as deriving from the donor cells; the patient was male, and the donor was his sister. Donor cell leukemia (DCL) is very rare, and it had never been reported in patients with CGD after HSCT. In the subsequent ten years, the AML relapsed three times and the patient underwent chemotherapy and three further HSCTs; donors were the same sister from the first HSCT, an unrelated donor, and his mother. The patient died during the third relapse. The DCL was characterized since onset by an acquired translocation between chromosomes 9 and 11, with a molecular rearrangement between the MLL and MLLT3 genes-a quite frequent cause of AML. In all of the relapses, the malignant clone had XX sex chromosomes and this rearrangement, thus indicating that it was always the original clone derived from the transplanted sister's cells. It exhibited the ability to remain quiescent in the BM during repeated chemotherapy courses, remission periods and HSCT. The leukemic clone then acquired different additional anomalies during the ten years of follow-up, with cytogenetic results characterized both by anomalies frequent in AML and by different, non-recurrent changes. This type of cytogenetic course is uncommon in AML

    Therapeutically targeting SELF-reinforcing leukemic niches in acute myeloid leukemia: A worthy endeavor?

    No full text
    A tight relationship between the acute myeloid leukemia (AML) population and the bone marrow (BM) microenvironment has been convincingly established. The AML clone contains leukemic stem cells (LSCs) that compete with normal hematopoietic stem cells (HSCs) for niche occupancy and remodel the niche; whereas, the BM microenvironment might promote AML development and progression not only through hypoxia and homing/adhesion molecules, but also through genetic defects. Although it is still unknown whether the niche influences treatment results or contains any potential target for treatment, this dynamic AML-niche interaction might be a promising therapeutic objective to significantly improve the AML cure rate. Am. J. Hematol. 91:507-517, 2016. (c) 2016 Wiley Periodicals, Inc
    corecore