82 research outputs found

    Functional image-based radiotherapy planning for non-small cell lung cancer: a simulation study

    Get PDF
    Background and purpose: To investigate the incorporation of data from single-photon emission computed tomography (SPECT) or hyperpolarized helium-3 magnetic resonance imaging (He-3-MRI) into intensity-modulated radiotherapy (IMRT) planning for non-small cell lung cancer (NSCLC). Material and methods: Seven scenarios were simulated that represent cases of NSCLC with significant functional lung defects. Two independent IMRT plans were produced for each scenario; one to minimise total lung volume receiving >= 20 Gy (V-20), and the other to minimise only the functional lung volume receiving >= 20 Gy (FV20). Dose-volume characteristics and a plan quality index related to planning target volume coverage by the 95% isodose (V-PTV95/FV20) were compared between anatomical and functional plans using the Wilcoxon signed ranks test. Results: Compared to anatomical IMRT plans, functional planning reduced FV20 (median 2.7%, range 0.6-3.5%, p = 0.02), and total lung V-20 (median 1.5%, 0.5-2.7%, p = 0.02), with a small reduction in mean functional lung dose (median 0.4 Gy, 0-0.7 Gy, p = 0.03). There were no significant differences in target volume coverage or organ-at-risk doses. Plan quality index was improved for functional plans (median increase 1.4, range 0-11.8, p = 0.02). Conclusions: Statistically significant reductions in FV20, V-20 and mean functional lung dose are possible when IMRT planning is supplemented by functional information derived from SPECT or He-3-MRI. (C) 2009 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 93 (2009) 32-3

    Midwives' competence : is it affected by working in a rural location?

    Get PDF
    Introduction: Rising health care costs and the need to consolidate expertise in tertiary services have led to the centralisation of services. In the UK, the result has been that many rural maternity units have become midwife-led. A key consideration is that midwives have the skills to competently and confidently provide maternity services in rural areas, which may be geographically isolated and where the midwife may only see a small number of pregnant women each year. Our objective was to compare the views of midwives in rural and urban settings, regarding their competence and confidence with respect to ‘competencies’ identified as being those which all professionals should have in order to provide effective and safe care for low-risk women. Method: This was a comparative questionnaire survey involving a stratified sample of remote and rural maternity units and an ad hoc comparison group of three urban maternity units in Scotland. Questionnaires were sent to 82 midwives working in remote and rural areas and 107 midwives working in urban hospitals with midwife-led units. Results: The response rate from midwives in rural settings was considerably higher (85%) than from midwives in the urban areas (60%). Although the proportion of midwives who reported that they were competent was broadly similar in the two groups, there were some significant differences regarding specific competencies. Midwives in the rural group were more likely to report competence for breech delivery (p = 0.001), while more urban midwives reported competence in skills such as intravenous fluid replacement (p <0.001) and initial and discharge examination of the newborn (p <0.001). Both groups reported facing barriers to continuing professional development; however, more of the rural group had attended an educational event within the last month (p <0.001). Lack of time was a greater barrier for urban midwives (p = 0.02), whereas distance to training was greater for rural midwives (p = 0.009). Lack of motivation or interest was significantly higher in urban units (p = 0.006). Conclusion: It is often assumed that midwives in rural areas where there are fewer deliveries, will be less competent and confident in their practice. Our exploratory study suggests that the issue of competence is far more complex and deserves further attention.NHS Education Scotlan

    Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning

    Get PDF
    To investigate the effect of beam angles and field number on functionally-guided intensity modulated radiotherapy (IMRT) normal lung avoidance treatment plans that incorporate hyperpolarised helium-3 magnetic resonance imaging ((3)He MRI) ventilation data. Eight non-small cell lung cancer patients had pre-treatment (3)He MRI that was registered to inspiration breath-hold radiotherapy planning computed tomography. IMRT plans that minimised the volume of total lung receiving  ⩾20 Gy (V20) were compared with plans that minimised (3)He MRI defined functional lung receiving  ⩾20 Gy (fV20). Coplanar IMRT plans using 5-field manually optimised beam angles and 9-field equidistant plans were also evaluated. For each pair of plans, the Wilcoxon signed ranks test was used to compare fV20 and the percentage of planning target volume (PTV) receiving 90% of the prescription dose (PTV90). Incorporation of (3)He MRI led to median reductions in fV20 of 1.3% (range: 0.2-9.3%; p  =  0.04) and 0.2% (range: 0 to 4.1%; p  =  0.012) for 5- and 9-field arrangements, respectively. There was no clinically significant difference in target coverage. Functionally-guided IMRT plans incorporating hyperpolarised (3)He MRI information can reduce the dose received by ventilated lung without comprising PTV coverage. The effect was greater for optimised beam angles rather than uniformly spaced fields

    Investigation of the Exclusive 3He(e,e'pp)n Reaction

    Get PDF
    Cross sections for the 3He(e,e'pp)n reaction were measured over a wide range of energy and three- momentum transfer. At a momentum transfer q=375 MeV/c, data were taken at transferred energies omega ranging from 170 to 290 MeV. At omega=220 MeV, measurements were performed at three q values (305, 375, and 445 MeV/c). The results are presented as a function of the neutron momentum in the final-state, as a function of the energy and momentum transfer, and as a function of the relative momentum of the two-proton system. The data at neutron momenta below 100 MeV/c, obtained for two values of the momentum transfer at omega=220 MeV, are well described by the results of continuum-Faddeev calculations. These calculations indicate that the cross section in this domain is dominated by direct two-proton emission induced by a one-body hadronic current. Cross section distributions determined as a function of the relative momentum of the two protons are fairly well reproduced by continuum-Faddeev calculations based on various realistic nucleon-nucleon potential models. At higher neutron momentum and at higher energy transfer, deviations between data and calculations are observed that may be due to contributions of isobar currents.Comment: 14 pages, 1 table, 17 figure

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T \sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm2^{-2} s1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T \sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-

    The Business Model: Recent Developments and Future Research

    Get PDF
    This article provides a broad and multifaceted review of the received literature on business models in which the authors examine the business model concept through multiple subject-matter lenses. The review reveals that scholars do not agree on what a business model is and that the literature is developing largely in silos, according to the phenomena of interest of the respective researchers. However, the authors also found emerging common themes among scholars of business models. Specifically, (1) the business model is emerging as a new unit of analysis; (2) business models emphasize a system-level, holistic approach to explaining how firms “do business”; (3) firm activities play an important role in the various conceptualizations of business models that have been proposed; and (4) business models seek to explain how value is created, not just how it is captured. These emerging themes could serve as catalysts for a more unified study of business models

    Two Intermediate-mass Transiting Brown Dwarfs from the TESS Mission

    Get PDF
    We report the discovery of two intermediate-mass transiting brown dwarfs (BDs), TOI-569b and TOI-1406b, from NASA's Transiting Exoplanet Survey Satellite mission. TOI-569b has an orbital period of P=.55604±0.00016 days, a mass of Mb = 64.1±1.9 MJ, and a radius of Rb = 0.75±0.02 RJ. Its host star, TOI-569, has a mass of Må = 1.21±0.05 M, a radius of Rå = 1.47±0.03 R, [Fe H 0.29 0.09] = + dex, and an effective temperature of Teff = 5768±10K. TOI-1406b has an orbital period of P=10.57415±0.00063 days, a mass of Mb = 46.0± 2.7 MJ, and a radius of Rb = 0.86±0.03 RJ. The host star for this BD has a mass of Må = 1.18±0.09 M, a radius of Rå = 1.35±0.03 R, [Fe/H] =-0.08± 0.09 dex, and an effective temperature of Teff = 6290±100 K. Both BDs are in circular orbits around their host stars and are older than 3 Gyr based on stellar isochrone models of the stars. TOI-569 is one of two slightly evolved stars known to host a transiting BD (the other being KOI-415). TOI-1406b is one of three known transiting BDs to occupy the mass range of 40-50 MJ and one of two to have a circular orbit at a period near 10 days (with the first being KOI-205b). Both BDs have reliable ages from stellar isochrones, in addition to their well-constrained masses and radii, making them particularly valuable as tests for substellar isochrones in the BD mass-radius diagram

    Exploring the Bimodal Solar System via Sample Return from the Main Asteroid Belt: The Case for Revisiting Ceres

    Get PDF
    Abstract: Sample return from a main-belt asteroid has not yet been attempted, but appears technologically feasible. While the cost implications are significant, the scientific case for such a mission appears overwhelming. As suggested by the “Grand Tack” model, the structure of the main belt was likely forged during the earliest stages of Solar System evolution in response to migration of the giant planets. Returning samples from the main belt has the potential to test such planet migration models and the related geochemical and isotopic concept of a bimodal Solar System. Isotopic studies demonstrate distinct compositional differences between samples believed to be derived from the outer Solar System (CC or carbonaceous chondrite group) and those that are thought to be derived from the inner Solar System (NC or non-carbonaceous group). These two groups are separated on relevant isotopic variation diagrams by a clear compositional gap. The interface between these two regions appears to be broadly coincident with the present location of the asteroid belt, which contains material derived from both groups. The Hayabusa mission to near-Earth asteroid (NEA) (25143) Itokawa has shown what can be learned from a sample-return mission to an asteroid, even with a very small amount of sample. One scenario for main-belt sample return involves a spacecraft launching a projectile that strikes an object and flying through the debris cloud, which would potentially allow multiple bodies to be sampled if a number of projectiles are used on different asteroids. Another scenario is the more traditional method of landing on an asteroid to obtain the sample. A significant range of main-belt asteroids are available as targets for a sample-return mission and such a mission would represent a first step in mineralogically and isotopically mapping the asteroid belt. We argue that a sample-return mission to the asteroid belt does not necessarily have to return material from both the NC and CC groups to viably test the bimodal Solar System paradigm, as material from the NC group is already abundantly available for study. Instead, there is overwhelming evidence that we have a very incomplete suite of CC-related samples. Based on our analysis, we advocate a dedicated sample-return mission to the dwarf planet (1) Ceres as the best means of further exploring inherent Solar System variation. Ceres is an ice-rich world that may be a displaced trans-Neptunian object. We almost certainly do not have any meteorites that closely resemble material that would be brought back from Ceres. The rich heritage of data acquired by the Dawn mission makes a sample-return mission from Ceres logistically feasible at a realistic cost. No other potential main-belt target is capable of providing as much insight into the early Solar System as Ceres. Such a mission should be given the highest priority by the international scientific community
    corecore