345 research outputs found

    A Study of Ozone at Railroad Valley, NV and Trinidad Head, CA

    Get PDF
    A STUDY OF OZONE AT RAILROAD VALLEY, NV and TRINIDAD HEAD, CA Ozone (Oᴣ) is a form of oxygen that protects the planet Earth from deadly ultraviolet rays emitted by the sun; without this triatomic molecule high in the atmosphere, life processes on the planet would be impossible. Ozone is an air pollutant and toxic in the lowest part of the atmosphere, and inhaling it could cause permanent damage to animals’ respiratory system. Long term exposure to high concentration of ozone has been linked with the development of asthma in children. Because of its complicated role in our atmosphere, scientists are studying its depletion and recovery in the stratosphere, and the minimization of ozone formation in the atmospheric boundary layer (the lowest part of the atmosphere). Here at NASA Ames Research Center (ARC), the Atmospheric Branch of Earth Science Division is conducting a study to examine and compare ozone concentrations in the atmospheric boundary layer (0 to ~2 km above the surface of the Earth) to those of the free troposphere (~2 km to ~10 km, where regional transport occurs), and to validate the accuracy of the ozone instrument used in the experiment. Using a 2BTechnology, Inc., Dual Beam Ozone Monitor installed inside the wing pod of an Alpha jet aircraft based at Moffett Field vertical profiles of ozone concentrations have been collected at Trinidad Head, California, and Railroad Valley (RRV), Nevada. The airborne data at Trinidad Head are also compared to standard measurements collected by the National Atmospheric and Oceanic Administration (NOAA) using a balloonborne DMT Electrochemical Concentration Cell Ozonesonde. My area of research is to support the calibration of the ozone instrument, to aggregate ozone measurements, and to analyze data collected from the three subject locations

    Validating IoT Devices with Rate-Based Session Types

    Get PDF
    We develop a session types based framework for implementing and validating rate-based message passing systems in Internet of Things (IoT) domains. To model the indefinite repetition present in many embedded and IoT systems, we introduce a timed process calculus with a periodic recursion primitive. This allows us to model rate-based computations and communications inherent to these application domains. We introduce a definition of rate based session types in a binary session types setting and a new compatibility relationship, which we call rate compatibility. Programs which type check enjoy the standard session types guarantees as well as rate error freedom --- meaning processes which exchanges messages do so at the same rate. Rate compatibility is defined through a new notion of type expansion, a relation that allows communication between processes of differing periods by synthesizing and checking a common superperiod type. We prove type preservation and rate error freedom for our system, and show a decidable method for type checking based on computing superperiods for a collection of processes. We implement a prototype of our type system including rate compatibility via an embedding into the native type system of Rust. We apply this framework to a range of examples from our target domain such as Android software sensors, wearable devices, and sound processing

    Testing and Improving a UAV-Based System Designed for Wetland Methane Source Measurements

    Get PDF
    Wetlands are the single highest emitting methane source category, but the magnitude of wetland fluxes remains difficult to fully characterize due to their large spatial extent and heterogeneity. Fluxes can vary with land surface conditions, vegetation type, and seasonal changes in environmental conditions. Unmanned aerial vehicles (UAVs) are an emerging platform to better characterize spatial variability in these natural ecosystems. While presenting some advantages over traditional techniques like towers and flux chambers, in that they are mobile vertically and horizontally, their use is still challenging, requiring continued improvement in sensor technology and field measurement approaches. In this work, we employ a small, fast response laser spectrometer on a Matrice 600 hexacopter. The system was previously deployed successfully for 40 flights conducted in a four-day period in 2018 near Fairbanks, Alaska. These flights revealed several potential areas for improvement, including: vertical positioning accuracy, the need for sensor health indicators, and approaches to deal with low wind speeds. An additional set of flights was conducted this year near Antioch in California. Flights were conducted several meters above ground up to 15-25 m in a curtain pattern. These curtains were flown both upwind and downwind of a tower site, allowing us to calculate a mass balance methane flux estimate that can be compared to eddy covariance fluxes from the tower. Testing will better characterize the extent to which altitude drifts in-flight and how GPS values compare with measurements from the onboard LIDAR, as well as the agreement between two-dimensional wind speed and direction on the ground versus measured onboard the UAV. Hardware improvements to the sensor and GPS are being considered to help reduce these sources of uncertainty. Results of this testing and how system performance relates to needs for quantifying wetland fluxes, will be presented

    Four Years of Airborne Measurements of Wildfire Emissions in California, with a Focus on the Evolution of Emissions During the Soberanes Megafire

    Get PDF
    Biomass burning is an important source of trace gases and particles which can influence air quality on local, regional, and global scales. With wildfire events increasing due to changes in land use, increasing population, and climate change, characterizing wildfire emissions and their evolution is vital. In this work we report in situ airborne measurements of carbon dioxide (CO2), methane (CH4), water vapor (H2O), ozone (O3), and formaldehyde (HCHO) from nine wildfire events in California between 2013 and 2016, which were sampled as part of the Alpha Jet Atmospheric eXperiment (AJAX) based at NASA Ames Research Center. One of those fires, the Soberanes Megafire, began on 22 July 2016 and burned for three months. During that time, five flights were executed to sample emissions near and downwind of the Soberanes wildfire. In situ data are used to determine enhancement ratios (ERs), or excess mixing ratio relative to CO2, as well as assess O3 production from the fire. Changes in the emissions as a function of fire evolution are explored. Air quality impacts downwind of the fire are addressed using ground-based monitoring site data, satellite smoke products, and the Community Multiscale Air Quality (CMAQ) photochemical grid model

    Analyzing Carbon Dioxide and Methane Emissions in California Using Airborne Measurements and Model Simulations

    Get PDF
    Greenhouse gas (GHG) concentrations have increased over the past decades and are linked to global temperature increases and climate change. These changes in climate have been suggested to have varying effects, and uncertain consequences, on agriculture, water supply, weather, sea-level rise, the economy, and energy. To counteract the trend of increasing atmospheric concentrations of GHGs, the state of California has passed the California Global Warming Act of 2006 (AB-32). This requires that by the year 2020, GHG (e.g., carbon dioxide (CO2) and methane (CH4)) emissions will be reduced to 1990 levels. To quantify GHG fluxes, emission inventories are routinely compiled for the State of California (e.g., CH4 emissions from the California Greenhouse Gas Emissions Measurement (CALGEM) Project). The major sources of CO2 and CH4 in the state of California are: transportation, electricity production, oil and gas extraction, cement plants, agriculture, landfills/waste, livestock, and wetlands. However, uncertainties remain in these emission inventories because many factors contributing to these processes are poorly quantified. To alleviate these uncertainties, a synergistic approach of applying air-borne measurements and chemical transport modeling (CTM) efforts to provide a method of quantifying local and regional GHG emissions will be performed during this study. Additionally, in order to further understand the temporal and spatial distributions of GHG fluxes in California and the impact these species have on regional climate, CTM simulations of daily variations and seasonality of total column CO2 and CH4 will be analyzed. To assess the magnitude and spatial variation of GHG emissions and to identify local hot spots, airborne measurements of CH4 and CO2 were made by the Alpha Jet Atmospheric eXperiment (AJAX) over the San Francisco Bay Area (SFBA) and San Joaquin Valley (SJV) in January and February 2013 during the Discover-AQ-CA study. High mixing ratios of GHGs were observed in-flight with a high degree of spatial variability. To provide an additional method to quantify GHG emissions, and analyze AJAX measurement data, the GEOS-Chem CTM is used to simulate SFBA/SJV GHG measurements. A nested-grid version of GEOS-Chem will be applied and utilizes varying emission inventories and model parameterizations to simulate GHG fluxes/emissions. The model considers CO2 fluxes from fossil fuel use, biomass/biofuel burning, terrestrial and oceanic biosphere exchanges, shipping and aviation, and production from the oxidation of carbon monoxide, CH4, and non-methane volatile organic carbons. The major sources of CH4 simulated in GEOS-Chem are domesticated animals, rice fields, natural gas leakage, natural gas venting/flaring (oil production), coal mining, wetlands, and biomass burning. Preliminary results from the comparison between available observations (e.g., AJAX and CALGEM CH4 emission maps) and GEOS-Chem results will be presented, along with a discussion of CO2 and CH4 source apportionment and the use of the GEOS-Chem-adjoint to perform inverse GHG modeling

    Characterization of Wildfire Emissions in California: Analysis of Airborne Measurements of Trace Gases from 2013 to 2016

    Get PDF
    Biomass burning, which includes wildfires, prescribed, and agricultural fires, is an important source of trace gases and particles, and can influence air quality on a local, regional, and global scale. Biomass burning emissions are an important source of several key trace gases including carbon dioxide (CO2) and methane (CH4). With the threat of wildfire events increasing due to changes in land use, increasing population, and climate change, the importance of characterizing wildfire emissions is vital. In this work we characterize trace gas emissions from 9 wildfire events in California between 2013 2016, in some cases with multiple measurements performed during different burn periods of a specific wildfire. During this period airborne measurements of CO2, CH4, water vapor (H2O), ozone (O3), and formaldehyde (HCHO) were made by the Alpha Jet Atmospheric eXperiment (AJAX). Located in the Bay Area of California, AJAX is a joint effort between NASA Ames Research Center and H211, LLC. AJAX makes in-situ airborne measurements of trace gases 2-4 times per month, resulting in 229 flights to date since 2011. Results presented include emission ratios (ER) of trace gases measured by AJAX during fire flights, and comparisons of ERs are made for each fire, which differ in time, location, burning intensity, and fuel type. We also use our airborne measurements to compare with photochemical grid model results to assess model approximations of plume transport and chemical evolution from select wildfires

    Proposed Trace Gas Measurements Over the Western United States for TROPOMI Validation

    Get PDF
    The Alpha Jet Atmospheric eXperiment (AJAX), located in the Bay Area of California, is a joint effort between NASA Ames Research Center and H211, LCC. AJAX makes in-situ airborne measurements of trace gases 2-4 times per month, resulting in over 216 flights since 2011. Current measurements include ozone (O3), carbon dioxide (CO2), methane (CH4), water (H2O), formaldehyde (HCHO), and meteorological measurements (i.e., ambient pressure, temperature, and 3D winds). Currently, the AJAX team is working to incorporate nitrogen dioxide (NO2) measurements with a Cavity Attenuated Phase Shift Spectrometer (CAPS). Successful science flights coincident with satellite overpasses have been performed since 2011 by the Alpha Jet, with more than 40 flights under the Greenhouse Observing SATellite (GOSAT) and several flights under the Orbiting Carbon Observatory-2 (OCO-2). Results from these flights, which have covered a range of different surfaces and seasonal conditions, will be presented. In-situ vertical profiles of O3, CO2, CH4, H2O, HCHO, and NO2 from the surface to 28,000 feet made by AJAX will also be valuable for satellite validation of data products obtained from the TROPOspheric Montoring Instrument (TROPOMI). TROPOMI is on board the Copernicus Sentinel-5 precursor (S5p) satellite, with level 2 products including O3, CO, CH4, HCHO, NO2, and aerosols

    Uptake of hypobromous acid (HOBr) by aqueous sulfuric acid solutions: low-temperature solubility and reaction

    No full text
    International audienceHypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45-70wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201-252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H*=104-107mol L-1atm-1. H* is inversely dependent on temperature, with ?H=-45.0±5.4 kJ mol-1 and ?S=-101±24 J mol-1K-1 for 55-70wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into 55-70wt% H2SO4, the solubility is described by log H*=(2349±280)/T-(5.27±1.24). At temperatures colder than ~213K, the solubility of HOBr in 45wt% H2SO4 is at least a factor of five larger than in 70wt% H2SO4, with log H*=(3665±270)/T-(10.63±1.23). The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Upon uptake of HOBr into aqueous sulfuric acid in the presence of other brominated gases, particularly for 70wt% H2SO4 solution, our measurements demonstrate chemical reaction of HOBr followed by evolution of gaseous products including Br2O and Br2

    Sports Hernia/Athletic Pubalgia Among Women

    Get PDF
    © The Author(s) 2018. Background: “Athletic pubalgia,” a term that has gained acceptance over “sports hernia,” is more common in men than women; however, it represents a significant source of morbidity for patients of both sexes. Inconsistent terminology surrounding this entity poses a diagnostic challenge and makes studying the populations at risk difficult. Purpose: To review a case series of women with athletic pubalgia by analyzing their presentations, concomitant pathologies, and surgical outcomes. Study Design: Case series; Level of evidence, 4. Methods: Between 2013 and 2016, 197 patients were seen and evaluated for the diagnosis of athletic pubalgia. Eighteen patients seen during this time were women. All patients received “pubalgia protocol” magnetic resonance imaging and subsequent surgical intervention for their pathologies. Outcomes among 17 women were assessed with a patient questionnaire \u3e1 year after surgery. Results: Of the 17 women, 9 had rectus aponeurotic plate injury only, or pure athletic pubalgia; the remaining 8 had athletic pubalgia in combination with ≥1 inguinal, obturator, and femoral hernias. Regarding female patients in both groups, 88.2% reported that the surgery was a success at follow-up. Conclusion: Surgical repair of athletic pubalgia among women is successful in dramatically reducing pain levels in this important subset of patients
    corecore