191 research outputs found

    Claudin-11 in health and disease: implications for myelin disorders, hearing, and fertility

    Get PDF
    Claudin-11 plays a critical role in multiple physiological processes, including myelination, auditory function, and spermatogenesis. Recently, stop-loss mutations in CLDN11 have been identified as a novel cause of hypomyelinating leukodystrophy (HLD22). Understanding the multifaceted roles of claudin-11 and the potential pathogenic mechanisms in HLD22 is crucial for devising targeted therapeutic strategies. This review outlines the biological roles of claudin-11 and the implications of claudin-11 loss in the context of the Cldn11 null mouse model. Additionally, HLD22 and proposed pathogenic mechanisms, such as endoplasmic reticulum stress, will be discussed

    Editorial: Sleep, vigilance & disruptive behaviors

    Get PDF
    The Frontiers in Psychiatry Research Theme of Sleep, vigilance, and disruptive behaviors has two aims: first, to promote the understanding of the connections between vigilance and disruptive daytime behavior in the context of sleep deprivation and, second, to explore how naturalistic observations and pattern recognition can play a role in furthering our understanding of these connections. . .

    Sleep Health Issues for Children with FASD: Clinical Considerations

    Get PDF
    This article describes the combined clinical experience of a multidisciplinary group of professionals on the sleep disturbances of children with fetal alcohol spectrum disorders (FASD) focusing on sleep hygiene interventions. Such practical and comprehensive information is not available in the literature. Severe, persistent sleep difficulties are frequently associated with this condition but few health professionals are familiar with both FASD and sleep disorders. The sleep promotion techniques used for typical children are less suitable for children with FASD who need individually designed interventions. The types, causes, and adverse effects of sleep disorders, the modification of environment, scheduling and preparation for sleep, and sleep health for their caregivers are discussed. It is our hope that parents and also researchers, who are interested in the sleep disorders of children with FASD, will benefit from this presentation and that this discussion will stimulate much needed evidence-based research

    Arginine:glycine amidinotransferase (AGAT) deficiency: Clinical features and long term outcomes in 16 patients diagnosed worldwide

    Get PDF
    Abstract Background Arginine:glycine aminotransferase (AGAT) (GATM) deficiency is an autosomal recessive inborn error of creative synthesis. Objective We performed an international survey among physicians known to treat patients with AGAT deficiency, to assess clinical characteristics and long-term outcomes of this ultra-rare condition. Results 16 patients from 8 families of 8 different ethnic backgrounds were included. 1 patient was asymptomatic when diagnosed at age 3 weeks. 15 patients diagnosed between 16 months and 25 years of life had intellectual disability/developmental delay (IDD). 8 patients also had myopathy/proximal muscle weakness. Common biochemical denominators were low/undetectable guanidinoacetate (GAA) concentrations in urine and plasma, and low/undetectable cerebral creatine levels. 3 families had protein truncation/null mutations. The rest had missense and splice mutations. Treatment with creatine monohydrate (100–800 mg/kg/day) resulted in almost complete restoration of brain creatine levels and significant improvement of myopathy. The 2 patients treated since age 4 and 16 months had normal cognitive and behavioral development at age 10 and 11 years. Late treated patients had limited improvement of cognitive functions. Conclusion AGAT deficiency is a treatable intellectual disability. Early diagnosis may prevent IDD and myopathy. Patients with unexplained IDD with and without myopathy should be assessed for AGAT deficiency by determination of urine/plasma GAA and cerebral creatine levels (via brain MRS), and by GATM gene sequencing

    Children\u27s Sleep during COVID-19: How Sleep Influences Surviving and Thriving in Families

    Get PDF
    Objective The COVID-19 pandemic has the potential to disrupt the lives of families and may have implications for children with existing sleep problems. As such, we aimed to: (1) characterize sleep changes during the COVID-19 pandemic in children who had previously been identified as having sleep problems, (2) identify factors contributing to sleep changes due to COVID-19 safety measures, and (3) understand parents and children s needs to support sleep during the pandemic. Methods Eighty-five Canadian parents with children aged 4 14 years participated in this explanatory sequential, mixed-methods study using an online survey of children s and parents sleep, with a subset of 16 parents, selected based on changes in their children s sleep, participating in semi-structured interviews. Families had previously participated in the Better Nights, Better Days (BNBD) randomized controlled trial. Results While some parents perceived their child s sleep quality improved during the COVID-19 pandemic (14.1%, n 12), many parents perceived their child s sleep had worsened (40.0%, n 34). Parents attributed children s worsened sleep to increased screen time, anxiety, and decreased exercise. Findings from semi-structured interviews highlighted the effect of disrupted routines on sleep and stress, and that stress reciprocally influenced children s and parents sleep. Conclusions The sleep of many Canadian children was affected by the first wave of the COVID-19 pandemic, with the disruption of routines influencing children s sleep. eHealth interventions, such as BNBD with modifications that address the COVID-19 context, could help families address these challenges

    Creatine Protects against Excitoxicity in an In Vitro Model of Neurodegeneration

    Get PDF
    Creatine has been shown to be neuroprotective in aging, neurodegenerative conditions and brain injury. As a common molecular background, oxidative stress and disturbed cellular energy homeostasis are key aspects in these conditions. Moreover, in a recent report we could demonstrate a life-enhancing and health-promoting potential of creatine in rodents, mainly due to its neuroprotective action. In order to investigate the underlying pharmacology mediating these mainly neuroprotective properties of creatine, cultured primary embryonal hippocampal and cortical cells were challenged with glutamate or H2O2. In good agreement with our in vivo data, creatine mediated a direct effect on the bioenergetic balance, leading to an enhanced cellular energy charge, thereby acting as a neuroprotectant. Moreover, creatine effectively antagonized the H2O2-induced ATP depletion and the excitotoxic response towards glutamate, while not directly acting as an antioxidant. Additionally, creatine mediated a direct inhibitory action on the NMDA receptor-mediated calcium response, which initiates the excitotoxic cascade. Even excessive concentrations of creatine had no neurotoxic effects, so that high-dose creatine supplementation as a health-promoting agent in specific pathological situations or as a primary prophylactic compound in risk populations seems feasible. In conclusion, we were able to demonstrate that the protective potential of creatine was primarily mediated by its impact on cellular energy metabolism and NMDA receptor function, along with reduced glutamate spillover, oxidative stress and subsequent excitotoxicity

    Consensus guidelines for the diagnosis and management of pyridoxine-dependent epilepsy due to alpha-aminoadipic semialdehyde dehydrogenase deficiency

    Get PDF
    Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an autosomal recessive condition due to a deficiency of α-aminoadipic semialdehyde dehydrogenase, which is a key enzyme in lysine oxidation. PDE-ALDH7A1 is a developmental and epileptic encephalopathy that was historically and empirically treated with pharmacologic doses of pyridoxine. Despite adequate seizure control, most patients with PDE-ALDH7A1 were reported to have developmental delay and intellectual disability. To improve outcome, a lysine-restricted diet and competitive inhibition of lysine transport through the use of pharmacologic doses of arginine have been recommended as an adjunct therapy. These lysine-reduction therapies have resulted in improved biochemical parameters and cognitive development in many but not all patients. The goal of these consensus guidelines is to re-evaluate and update the two previously published recommendations for diagnosis, treatment, and follow-up of patients with PDE-ALDH7A1. Members of the International PDE Consortium initiated evidence and consensus-based process to review previous recommendations, new research findings, and relevant clinical aspects of PDE-ALDH7A1. The guideline development group included pediatric neurologists, biochemical geneticists, clinical geneticists, laboratory scientists, and metabolic dieticians representing 29 institutions from 16 countries. Consensus guidelines for the diagnosis and management of patients with PDE-ALDH7A1 are provided. This article is protected by copyright. All rights reserved

    Exome Sequencing and the Management of Neurometabolic Disorders

    Get PDF
    BACKGROUND: Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. METHODS: To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. RESULTS: We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). CONCLUSIONS: Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.)
    corecore