32 research outputs found

    Nouveau mécanisme de régulation de l'apoptose par les récepteurs couplés aux protéines G

    Get PDF
    L’apoptose est un processus dont l’importance physiologique et pathophysiologique est de mieux en mieux appréciée. Si plusieurs mécanismes expliquant son initiation et son exécution ont été décrits, les détails de sa régulation fine restent à être précisés. Par ces travaux, nous démontrons une interaction directe entre la protéine pro-apoptotique Siva1 et la queue C-terminale de plusieurs récepteurs couplés aux protéines G, incluant TP, IP, PAF, AT?R et CHRM3. Pour TP, nous prouvons que la stimulation du récepteur par le U46619 entraîne une translocation et une accumulation cytoplasmique de Sival, ainsi qu’une modulation de ses interactions avec Mdm2, XIAP et TRAF2, résultant en une induction de l’apoptose. Nous rapportons également que l’expression de Siva1 potentialise l’ubiquitinylation de TP en réponse à une stimulation et que cette ubiquitinylation n’affecte ni la dégradation, ni l’internalisation du récepteur. Nous démontrons par ailleurs que la stimulation de TP diminue l’expression totale d’i?B?, l’inhibiteur principal de la voie NF?B et que cet effet corrèle avec le niveau d’expression de Siva1. En démontrant l’existence d’un complexe entre TP et TRAF2 suite à une stimulation réceptorielle, nous proposons que la modulation NF?B par TP pourrait résulter d’une signalisation dépendant de l’ubiquitine et analogue à celle des TNFR. D’autre part, nous présentons une interaction entre Siva1 et l’arrestine et apportons des données suggérant que l’expression de Siva1 pourrait moduler l’activation des MAPK. Nous proposons finalement un modèle réconciliant les fonctions anti- et pro-apoptotiques de TP et dans lequel le phénotype final d’une stimulation dépendrait de l’expression relative de Siva1. Les corolaires de ce modèle pourraient possiblement bonifier la prise en charge d’incidents ischémiques comme l’infarctus du myocarde ou l’accident vasculaire cérébral, et améliorer le traitement du cancer par une diminution de la toxicité d’agents chimiothérapeutiques et l’amélioration de la sensibilité tumorale.[symboles non conformes

    Deep-Brain Stimulation for Essential Tremor and Other Tremor Syndromes: A Narrative Review of Current Targets and Clinical Outcomes

    No full text
    Tremor is a prevalent symptom associated with multiple conditions, including essential tremor (ET), Parkinson’s disease (PD), multiple sclerosis (MS), stroke and trauma. The surgical management of tremor evolved from stereotactic lesions to deep-brain stimulation (DBS), which allowed safe and reversible interference with specific neural networks. This paper reviews the current literature on DBS for tremor, starting with a detailed discussion of current tremor targets (ventral intermediate nucleus of the thalamus (Vim), prelemniscal radiations (Raprl), caudal zona incerta (Zi), thalamus (Vo) and subthalamic nucleus (STN)) and continuing with a discussion of results obtained when performing DBS in the various aforementioned tremor syndromes. Future directions for DBS research are then briefly discussed

    Deep-Brain Stimulation for Essential Tremor and Other Tremor Syndromes: A Narrative Review of Current Targets and Clinical Outcomes

    No full text
    Tremor is a prevalent symptom associated with multiple conditions, including essential tremor (ET), Parkinson’s disease (PD), multiple sclerosis (MS), stroke and trauma. The surgical management of tremor evolved from stereotactic lesions to deep-brain stimulation (DBS), which allowed safe and reversible interference with specific neural networks. This paper reviews the current literature on DBS for tremor, starting with a detailed discussion of current tremor targets (ventral intermediate nucleus of the thalamus (Vim), prelemniscal radiations (Raprl), caudal zona incerta (Zi), thalamus (Vo) and subthalamic nucleus (STN)) and continuing with a discussion of results obtained when performing DBS in the various aforementioned tremor syndromes. Future directions for DBS research are then briefly discussed

    Inverse agonist and pharmacochaperone properties of MK-0524 on the prostanoid DP1 receptor.

    Get PDF
    Prostaglandin D₂ (PGD₂) acts through two G protein-coupled receptors (GPCRs), the prostanoid DP receptor and CRTH2 also known as DP1 and DP2, respectively. Several previously characterized GPCR antagonists are now classified as inverse agonists and a number of GPCR ligands are known to display pharmacochaperone activity towards a given receptor. Here, we demonstrate that a DP1 specific antagonist, MK-0524 (also known as laropiprant), decreased basal levels of intracellular cAMP produced by DP1, a Gα(s)-coupled receptor, in HEK293 cells. This reduction in cAMP levels was not altered by pertussis toxin treatment, indicating that MK-0524 did not induce coupling of DP1 to Gα(i/o) proteins and that this ligand is a DP1 inverse agonist. Basal ERK1/2 activation by DP1 was not modulated by MK-0524. Interestingly, treatment of HEK293 cells expressing Flag-tagged DP1 with MK-0524 promoted DP1 cell surface expression time-dependently to reach a maximum increase of 50% compared to control after 24 h. In contrast, PGD₂ induced the internalization of 75% of cell surface DP1 after the same time of stimulation. The increase in DP1 cell surface targeting by MK-0524 was inhibited by Brefeldin A, an inhibitor of transport from the endoplasmic reticulum-Golgi to the plasma membrane. Confocal microscopy confirmed that a large population of DP1 remained trapped intracellularly and co-localized with calnexin, an endoplasmic reticulum marker. Redistribution of DP1 from intracellular compartments to the plasma membrane was observed following treatment with MK-0524 for 24 h. Furthermore, MK-0524 promoted the interaction between DP1 and the ANKRD13C protein, which we showed previously to display chaperone-like effects towards the receptor. We thus report that MK-0524 is an inverse agonist and a pharmacochaperone of DP1. Our findings may have important implications during therapeutic treatments with MK-0524 and for the development of new molecules targeting DP1
    corecore