33 research outputs found

    The Braincase and Neurosensory Anatomy of an Early Jurassic Marine Crocodylomorph: Implications for Crocodylian Sinus Evolution and Sensory Transitions

    Get PDF
    This is the pre-peer reviewed version of the following article: Brusatte, S. L., Muir, A. , Young, M. T., Walsh, S. , Steel, L. and Witmer, L. M. (2016), The Braincase and Neurosensory Anatomy of an Early Jurassic Marine Crocodylomorph: Implications for Crocodylian Sinus Evolution and Sensory Transitions. Anat. Rec., 299: 1511-1530., which has been published in final form at doi:10.1002/ar.23462. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." You are advised to consult the published version if you wish to cite from it

    Insights into the Ecology and Evolutionary Success of Crocodilians Revealed through Bite-Force and Tooth-Pressure Experimentation

    Get PDF
    BackgroundCrocodilians have dominated predatory niches at the water-land interface for over 85 million years. Like their ancestors, living species show substantial variation in their jaw proportions, dental form and body size. These differences are often assumed to reflect anatomical specialization related to feeding and niche occupation, but quantified data are scant. How these factors relate to biomechanical performance during feeding and their relevance to crocodilian evolutionary success are not known.Methodology/Principal FindingsWe measured adult bite forces and tooth pressures in all 23 extant crocodilian species and analyzed the results in ecological and phylogenetic contexts. We demonstrate that these reptiles generate the highest bite forces and tooth pressures known for any living animals. Bite forces strongly correlate with body size, and size changes are a major mechanism of feeding evolution in this group. Jaw shape demonstrates surprisingly little correlation to bite force and pressures. Bite forces can now be predicted in fossil crocodilians using the regression equations generated in this research.Conclusions/SignificanceCritical to crocodilian long-term success was the evolution of a high bite-force generating musculo-skeletal architecture. Once achieved, the relative force capacities of this system went essentially unmodified throughout subsequent diversification. Rampant changes in body size and concurrent changes in bite force served as a mechanism to allow access to differing prey types and sizes. Further access to the diversity of near-shore prey was gained primarily through changes in tooth pressure via the evolution of dental form and distributions of the teeth within the jaws. Rostral proportions changed substantially throughout crocodilian evolution, but not in correspondence with bite forces. The biomechanical and ecological ramifications of such changes need further examination

    Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (<it>Danio rerio</it>) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes.</p> <p>Results</p> <p>We describe one new muscle and show that the number of mandibular, hyoid and hypobranchial muscles found in four day-old zebrafish larvae is similar to that found in the adult. However, the overall configuration and/or the number of divisions of these muscles change during development. For example, the undivided adductor mandibulae of early larvae gives rise to the adductor mandibulae sections A0, A1-OST, A2 and Aω, and the protractor hyoideus becomes divided into dorsal and ventral portions in adults. There is not always a correspondence between the ontogeny of these muscles in the zebrafish and their evolution within the Osteichthyes. All of the 13 mandibular, hyoid and hypobranchial muscles present in the adult zebrafish are found in at least some other living teleosts, and all except the protractor hyoideus are found in at least some extant non-teleost actinopterygians. Of these muscles, about a quarter (intermandibularis anterior, adductor mandibulae, sternohyoideus) are found in at least some living tetrapods, and a further quarter (levator arcus palatini, adductor arcus palatini, adductor operculi) in at least some extant sarcopterygian fish.</p> <p>Conclusion</p> <p>Although the zebrafish occupies a rather derived phylogenetic position within actinopterygians and even within teleosts, with respect to the mandibular, hyoid and hypobranchial muscles it seems justified to consider it an appropriate representative of these two groups. Among these muscles, the three with clear homologues in tetrapods and the further three identified in sarcopterygian fish are particularly appropriate for comparisons of results between the actinopterygian zebrafish and the sarcopterygians.</p

    A New Crocodylian from the Late Maastrichtian of Spain: Implications for the Initial Radiation of Crocodyloids

    Get PDF
    The earliest crocodylians are known primarily from the Late Cretaceous of North America and Europe. The representatives of Gavialoidea and Alligatoroidea are known in the Late Cretaceous of both continents, yet the biogeographic origins of Crocodyloidea are poorly understood. Up to now, only one representative of this clade has been known from the Late Cretaceous, the basal crocodyloid Prodiplocynodon from the Maastrichtian of North America.The fossil studied is a skull collected from sandstones in the lower part of the Tremp Formation, in Chron C30n, dated at -67.6 to 65.5 Ma (late Maastrichtian), in Arén (Huesca, Spain). It is located in a continuous section that contains the K/P boundary, in which the dinosaur faunas closest to the K/P boundary in Europe have been described, including Arenysaurus ardevoli and Blasisaurus canudoi. Phylogenetic analysis places the new taxon, Arenysuchus gascabadiolorum, at the base of Crocodyloidea.The new taxon is the oldest crocodyloid representative in Eurasia. Crocodyloidea had previously only been known from the Palaeogene onwards in this part of Laurasia. Phylogenetically, Arenysuchus gascabadiolorum is situated at the base of the first radiation of crocodyloids that occurred in the late Maastrichtian, shedding light on this part of the cladogram. The presence of basal crocodyloids at the end of the Cretaceous both in North America and Europe provides new evidence of the faunal exchange via the Thulean Land Bridge during the Maastrichtian

    Jaw biomechanics in the South American aetosaur Neoaetosauroides engaeus

    Get PDF
    The function of the jaw apparatus and the possible dietary habits of the aetosaur Neoaetosauroides engaeus from the Triassic of South America were analyzed in comparison with Northern Hemisphere aetosaurs Desmatosuchus haplocerus and Stagonolepis robertsoni and the living short-snouted crocodile Alligator mississippiensis. The adductor and depressor jaw musculature of these was reconstructed on the basis of dental and skeletal comparisons with living closest relatives' extant phylogenetic bracket (EPB), followed by the analysis of the moment arms of these muscles to infer feeding habits. The aetosaurian skull design indicates that the total leverage of the inferred jaw musculature provides force rather than speed. However, within aetosaurs, the high ratios of muscle moment arms to bite moments indicate stronger bites in the northern Hemisphere forms, and faster ones in Neoaetosauroides. These differences indicate more developed crushing, chopping, and slicing capacities, especially at the back of the tooth series for D. haplocerus and S. robertsoni; whereas it opens a window to consider different abilities in which speed is involved for N. engaeus. There are differences among aetosaurs in dental characteristics, position of the supratemporal fenestra, location of the jaw joint relative to the tooth row, and shape of the lower jaw. Neoaetosauroides does not show evidence of dental serrations and wear facets, probably consistent with a relatively soft and non-abrasive diet, for example soft leaves and/or larvae and insects without hard structures. It might be possible that Neoaetosauroides represents a tendency towards insectivorous feeding habits, exploiting a food source that was widespread in continental environments throughout the Triassic.Fil: Desojo, Julia Brenda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”; ArgentinaFil: Vizcaíno, Sergio Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Departamento Científico de Paleontología de Vertebrados; Argentin

    The origin of snake feeding

    No full text
    Snakes are renowned for their ability to engulf extremely large prey, and their highly flexible skulls and extremely wide gape are among the most striking adaptations found in vertebrates(1-5). However, the evolutionary transition from the relatively inflexible lizard skull to the highly mobile snake skull remains poorly understood, as they appear to be fundamentally different and no obvious intermediate stages have been identified(4,5). Here we present evidence that mosasaurs-large, extinct marine lizards related to snakes-represent a crucial intermediate stage. Mosasaurs, uniquely among lizards, possessed long, snake-like palatal teeth for holding prey. Also, although they retained the rigid upper jaws typical of lizards, they possessed highly flexible lower jaws that were not only morphologically similar to those of snakes, but also functionally similar. The highly flexible lower jaw is thus inferred to have,evolved before the highly flexible upper jaw-in the macrophagous common ancestor of mosasaurs and snakes-for accommodating large prey. The mobile upper jaw evolved later-in snakes-for dragging prey into the oesophagus. Snakes also have more rigid braincases than lizards, and the partially fused meso- and metakinetic joints of mosasaurs are transitional between the loose joints of lizards and the rigid joints of snakes. Thus, intermediate morphologies in snake skull evolution should perhaps be sought not in small burrowing lizards, as commonly assumed, but in large marine forms
    corecore