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ABSTRACT: Modern crocodilians are a morphologically conservative group, but extinct 

relatives (crocodylomorphs) experimented with a wide range of diets, behaviors, and body 

sizes. Among the most unusual of these fossil groups is the thalattosuchians, an assemblage 

of marine-dwellers that transitioned from semi-aquatic species (teleosaurids) into purely 

open-ocean forms (metriorhynchids) during the Jurassic and Cretaceous Periods (ca. 191-125 

million years ago). Thalattosuchians can give insight into the origin of modern crocodilian 

morphologies and how anatomy and behavior changes during a major evolutionary transition 

into a new habitat, but little is known about their brains, sensory systems, cranial sinuses, and 

vasculature. We here describe the endocranial anatomy of a well-preserved specimen of the 

Jurassic semi-aquatic teleosaurid Steneosaurus cf. gracilirostris using X-ray micro-CT. We 

find that this teleosaurid still had an ear well attuned to hear on land, but had developed large 

internal carotid and orbital arteries that likely supplied salt glands, which were previously 

thought to be present in only the fully pelagic metriorhynchids. There is no great gulf in 

endocranial anatomy between this teleosaurid and the metriorhynchids, and some of the 

features that later permitted metriorhynchids to invade the oceanic realm were apparently first 

developed in semi-aquatic taxa. Compared to modern crocodilians, Steneosaurus cf. 

gracilirostris has a more limited set of pharyngotympanic sinuses, but it is unclear whether 

this relates to its aquatic habitat or represents the primitive condition of crocodylomorphs that 

was later elaborated. 

   

Key words: crocodylomorph, thalattosuchian, sensory evolution, pneumaticity, tympanic 

sinuses, neuroanatomy  
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Crocodilians are some of the most conspicuous animals in today’s world, but they are not a 

particularly diverse group. There are approximately 25 species of modern crocodilians, all of 

which are semi-aquatic predators that predominately lurk in tropical-to-subtropical shallow 

waters and use their powerful bites and conical teeth to subdue prey (e.g., Busbey, 1995; 

McHenry et al., 2006; Pierce et al., 2008). This morphological and ecological conservatism 

belies the long evolutionary history of crocodilians, which are survivors of about 250 million 

years of evolution, spanning from when the crocodilian lineage split from its sister group, 

which led to dinosaurs and birds, until the present day (Brusatte et al., 2010; Nesbitt, 2011). 

Fossil crocodylomorphs—members of the wider group that includes modern crocodiles and 

their closest extinct relatives—include a variety of plant-eating, fast-running, pug-nosed, and 

swimming species of incredible morphological variety, ranging from the size of a dog to 

longer than a bus. Studying these species can give insight into how the characteristic body 

plan, sensory abilities, and behaviors of modern crocodilians developed over evolutionary 

time. 

 One of the most intriguing groups of extinct crocodylomorphs is the thalattosuchians, 

a diverse assemblage of marine-dwellers that had a near global distribution during the 

Jurassic Period and survived into the Early Cretaceous, a total time span ca. 191-125 million 

years ago (e.g., Gasparini et al., 2000; Young et al., 2010; Chiarenza et al., 2015; Wilberg, 

2015). The thalattosuchians are divided into two main subgroups: Teleosauridae, a clade of 

long-snouted semi-aquatic forms that superficially resembled modern gharials, and 

Metriorhynchidae, a group of pelagic species that could swim fast and hunt in the open 

ocean, like living toothed whales. The metriorhynchids are some of the most aberrant reptiles 

that ever existed, as they evolved from land-living ancestors but became specialized for a 

fully aquatic existence by developing features such as large salt glands that allowed them to 

drink seawater and expel excess salt from their food, hydrofoil-like forelimbs and a 
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hypocercal tail that were used for swimming, and structural lightening of the skeleton and a 

loss of osteoderms that made them more buoyant and hydrodynamic in the water (Fraas, 

1902; Andrews, 1913; Hua and Buffrénil, 1996; Fernández and Gasparini, 2000, 2008; 

Young et al., 2010; Herrera et al., 2013; Wilberg, 2015). 

 Thalattosuchians are important for two main reasons. First, the transition from land-

living or semi-aquatic species to the purely marine metriorhynchids was a major evolutionary 

transformation, akin to the origin of whales from terrestrial mammals. It promises to give 

insight into how anatomy, behavior, and physiology change as vertebrates invade new 

habitats and are modified for new lifestyles. Second, because thalattosuchians are relatively 

basal members of Crocodylomorpha and are known from a wealth of fossil specimens, they 

can give insight into the primitive crocodilian bauplan and how the modern species 

developed their signature morphologies and behaviors from their fossil ancestors. Over the 

last decade, reexamination of long-known fossils, phylogenetic analyses, histological studies, 

and description of skull features relating to diet have helped to elucidate evolutionary patterns 

in thalattosuchians and cement their importance in untangling the early history of 

crocodylomorphs (e.g., Hua & Buffrénil, 1996; Fernández & Gasparini, 2008; Pierce et al., 

2009; Young et al., 2010; Wilberg, 2015).  

 One area that has been poorly explored, however, is thalattosuchian neuroanatomy 

and sensory capabilities. Only a limited number of specimens have been examined in the 

detail necessary to discuss these issues (e.g., Seeley, 1880; Wenz, 1968; Wharton, 2000; 

Holliday and Witmer, 2009; Fernández et al., 2011; Herrera et al., 2013; Herrera and 

Vennari, 2015). In particular, there has been very little study of the internal structure of the 

thalattosuchian brain, sinuses, sensory organs, nerves, and vessels, which are key to 

understanding the behaviors and senses of these animals, particularly with regard to their 

secondary adaptation to an aquatic environment. Recent papers have started to use computed 
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tomography (CT) scanning to visualize the internal anatomy of some thalattosuchians (e.g., 

Fernández and Herrera, 2009; Fernández et al., 2011; Herrera et al., 2013; Herrera and 

Vennari, 2015), but only a few specimens have been studied this way, and much of the focus 

has been on the olfactory system and salt glands. The brain, sinuses, and inner ear of a 

thalattosuchian have yet to be described in detail using CT data. 

 We here describe the internal endocranial anatomy of a well-preserved specimen of a 

Jurassic teleosaurid thalattosuchian using X-ray micro-CT (µCT). We make comparisons 

between the brain, air sinus, vascular, and ear anatomy of this specimen and other fossil and 

modern crocodylomorphs, and quantitatively compare the hearing capabilities of the fossil 

specimen (based on inner ear anatomical proxies) to that of modern crocodilians. We then 

discuss the importance of the fossil data for understanding how modern crocodilians evolved 

and how thalattosuchians transitioned from a terrestrial to an aquatic habitat.  

Institutional abbreviations—FMNH, Field Museum of Natural History, Chicago, 

Illinois, USA; MNHN, Muséum National d'Histoire Naturelle, Paris, France; NHMUK, 

Natural History Museum, London, UK; SMNS, Staatliches Museum für Naturkunde 

Stuttgart, Baden-Württemberg, Germany. 

 

MATERIALS AND METHODS 

 

Fossil specimen 

 

The braincase of the teleosaurid thalattosuchian Steneosaurus cf. gracilirostris (NHMUK PV 

OR 33095) forms the basis for this study (Figs. 1-2). It is from the Whitby Mudstone 

Formation of Whitby, Yorkshire, UK (lower Toarcian, Early Jurassic, ca. 183-178 million 

years ago). The specimen is relatively intact, comprising the neurocranium from the frontal 
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posterior process posterior-wards, and exhibits little ventral distortion or lateral compression. 

The maximum preserved length is 115.26 mm and the maximum preserved width is 124 mm. 

As the skull is incomplete we cannot be completely certain of its species identification. 

However, it shares numerous characteristics with the holotype (NHMUK PV OR 14792) and 

paratype (NHMUK PV OR 15500) of Steneosaurus gracilirostris, including: a large, sub-

triangular parietal dorsal ‘table’, which in dorsal view has a pronounced convexity at the 

midline on its posterior margin; the anterior point of the parietal ‘table’ is almost on the same 

plane as the raised ridges that delimit the two muscular fossae within each supratemporal 

(=dorsotemporal) fenestra; and the dorsal surfaces of the frontal and parietal have poorly 

defined ornamentation composed of large, irregularly-shaped ovals and elongate pits, which 

are irregularly spaced, with some being widely separated (note that much of the dorsal 

surfaces of these bones are in fact worn and damaged, so this texture is not uniformly 

visible).  

Steneosaurus is taxonomically problematic, with recent phylogenetic analyses finding 

the genus to be either paraphyletic or polyphyletic (e.g., Young et al., 2012; Wilberg, 2015). 

Therefore, what species actually belong in Steneosaurus is a major issue in thalattosuchian 

taxonomy, one which is currently being investigated. As such, the description herein should 

not be considered as representative of the entire genus Steneosaurus. 

 

Comparative Material 

 

Three-dimensional virtual endocasts of the brain, inner ear, and sinuses reconstructed from 

CT data have been published for the extant crocodilians Crocodylus johnsoni (Witmer et al., 

2008) and Alligator mississippiensis (Dufeau and Witmer, 2015). To add to the pool of 

comparative data for modern species, we also reconstructed the cranial endocast and inner ear 

Page 6 of 55

John Wiley & Sons, Inc.

The Anatomical Record

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

of Caiman crocodilus, the spectacled caiman, based on a subadult specimen collected in 

Choco, Colombia, and accessioned into the collections of the Field Museum of Natural 

History (FMNH 73711). This is a well-preserved, three-dimensional specimen without any 

obvious distortion or breaks.  

 

Computed Tomography and Visualization 

 

The braincase of Steneosaurus cf. gracilirostris (NHMUK PV OR 33095) was µCT scanned 

at the Natural History Museum (London) using their Nikon XT H 225ST CT system in 2014. 

It was scanned at 215kV and 150µA, with the following parameters: 1.0mm tin filter, 

projections were made with an angle of 0.115° between projections. Isotropic voxel size = 

89µm. Distance from source to detector = 1170mm. Distance from source to specimen = 

523mm. Mask radius = 89.33mm.  

The skull of Caiman crocodilus (FMNH 73711) was scanned at the High-Resolution 

Scanning Facility of the University of Texas, Austin in 2002. It was scanned along the 

coronal axis, and a total of 945 projections were made, each with a thickness of 0.142mm. 

The interslice spacing is also 0.142mm, and the field of reconstruction is 67 mm. Voxel 

dimensions=65 (X) x 65 (Y) x 142 (Z). Further information on the specimen is available from 

the open source DigiMorph digital library of CT scan data: 

http://www.digimorph.org/specimens/Caiman_crocodilus/ 

 For both specimens, three-dimensional models of the cranial endocast, inner ear, 

nerves and vessels, and sinuses were rendered by one of us (Muir) by digitally segmenting 

the CT slice data using Materialise Mimics 17.0 at the University of Edinburgh, School of 

GeoSciences. The 3D Livewire and Calculate 3D tools were used, respectively.  
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Standard linear measurements of the brain cavity endocast, associated nerve foramina 

and vascular openings within the endocranium were made using the measuring tools in 

Materialise Mimics 17.0. All measurements were taken from 3D voxel model data rather than 

polygon mesh models or across the tomograph stack. Angular and distance measurements 

were also recorded for the inner ear labyrinth.  

We used the methods of Walsh et al. (2009) to estimate mean hearing frequency and 

hearing range of NHMUK PV OR 33095. This approach involves linear regression of 

measurements of the endosseous cochlear duct (ECD) length that have been scaled to 

basicranial length and log transformed, against hearing sensitivity data derived from 

audiogram analysis of living crocodilian, avian, squamate and chelonian taxa. The same 

transformed values derived from NHMUK PV OR 33095 are then used to determine the 

position of this taxon on the audiogram regression line (for full methods see Walsh et al., 

2009). The calculation was made using measurements from the left labyrinth, as the right 

labyrinth could not be completely reconstructed. 

 

RESULTS 

 

External cranial anatomy of NHMUK PV OR 33095 

 

Frontal. The frontal is poorly preserved and largely incomplete (Figs. 1-2). Only the frontal’s 

contributions to the intertemporal bar and anteromedial corners of the supratemporal 

fenestrae are preserved. Unfortunately, the external frontal-parietal suture is difficult to 

discern, and thus we cannot be sure of the sutural positions and the extent of the frontal. 

However, the visible morphology is very similar to that of other Steneosaurus gracilirostris 

skulls, and the morphology described by Jouve (2009) for Teleosaurus cadomensis. The 
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external surface morphology of the frontal is worn and damaged, but poorly defined 

ornamentation consisting of large, irregularly-shaped ovals and elongate pits can be seen. 

 There is a distinct ‘platform’ in the anteromedial corner of the supratemporal fenestra. 

This also occurs in other thalattosuchians (Fraas, 1902; Andrews, 1913; Lepage et al., 2008; 

Jouve, 2009; Young et al., 2010; 2012, 2013, 2014a; Wilberg, 2015), and is primarily 

composed by the frontal, with its outer edges contacting the parietal (and also the postorbitals 

in metriorhynchoids, in which this platform is proportionally larger). Thus the ‘platform’ 

likely is the maximal contribution of the frontal to the supratemporal fossa. This 

interpretation is supported by the position of the parietal-laterosphenoid suture, which is 

posteroventral to the ‘platform’ (best seen in right lateral view). This would result in the 

parietal separating the frontal from the laterosphenoid, as in Teleosaurus cadomensis 

(MNHN.F AC 8746; Jouve, 2009). 

 

Parietal. The parietal is relatively well preserved (Figs. 1-2). It appears as a single element, 

without any signs of the interparietal suture on the external surface. In dorsal view, the 

parietal should be ‘T’-shaped, with an elongate anterior process and two lateral processes. 

However, the two lateral processes are badly damaged, making their relationship with the 

medial processes of the squamosals impossible to trace. The parietal forms the posterior and 

medial margins of the supratemporal fenestrae and fossae. The anterior process forms most of 

the intertemporal bar and contacts the frontal anteriorly.  

In dorsal view, the anterior process narrows dramatically as it extends posteriorly 

towards the occiput, forming a sagittal crest, until it broadens out again to form the ‘parietal 

table’. The ‘parietal table’ is seen in all teleosaurids, being typically better developed in adult 

specimens (Andrews, 1913; Westphal, 1961, 1962; Lepage et al., 2008; Young et al., 2014a). 

It is a sub-triangular, flat surface, which makes up the region where the anterior and lateral 
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processes of the parietal meet. Its external surface has a similar ornamentation as that of the 

frontal. The ‘table’ is particularly large, similar in size to those in the holotype and paratype 

of Steneosaurus gracilirostris, with its anterior point being almost on the same plane as the 

raised ridges at the laterosphenoid-prootic sutures on both sides of the skull, that delimit two 

muscular fossae within the supratemporal fenestra on each side (see below). In dorsal view, 

there is also a pronounced convexity at the midline of the posterior margin of the ‘table’, 

which overhangs the supraoccipital slightly. 

Within the supratemporal fenestra the parietal forms the dorsal half of the medial 

supratemporal wall. The prootic and the laterosphenoid can be seen ventral to the anterior 

process (Fig. 2), with the parietal separating the frontal from the laterosphenoid (see above). 

The laterosphenoid contacts the ventral margin of the anterior process along the anterior-

middle regions of the anterior process, whereas the prootic contacts the ventral margin of the 

anterior process immediately posterior to the laterosphenoid. The parietal is devoid of 

ornamentation within the supratemporal fenestrae. 

In occipital view, the supraoccipital is ventral to the ‘parietal table’, which terminates 

approximately level to the occipital tuberosities. The contacts between the parietal and the 

exoccipital-opisthotic complex cannot be seen in occipital view because of the damage to the 

lateral processes of the parietal. 

 

Squamosal. The squamosals appear to be missing. However, because of damage along the 

postorbital-squamosal ridges (sensu Young et al., 2013) it is not possible to discern externally 

whether or not the medial processes of the left and right squamosals are present. The dorsal 

surfaces of these ridges are worn away, and as the supratemporal fenestrae are largely 

incomplete and have damaged edges, we cannot ascertain whether a squamosal-postorbital 

suture is present. 
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Prootic. Both prootics are fairly well preserved (Figs. 1-2). When observed within the 

supratemporal fenestra, the prootic is a subtriangular bone that forms the posteromedial 

corner of the supratemporal wall. Dorsally it contacts the parietal, posteroventrally the 

quadrate, and anteriorly the laterosphenoid. The suture between the prootic and 

laterosphenoid is expressed as a pronounced, raised, dorsoventrally-trending ridge that begins 

slightly dorsal to the midpoint of the dorsal margin of the trigeminal foramen (cranial nerve 

V). This ridge is seen in other thalattosuchians, including both teleosaurids and 

metriorhynchids (Holliday and Witmer, 2009; Fernández et al., 2011). In NHMUK PV OR 

33095, the ridge extends far dorsally, dividing the supratemporal fossa into attachments for 

two muscles, as described by Holliday and Witmer (2009) in Pelagosaurus typus. The more 

posterior fossa, located mostly on the prootic, is interpreted as an attachment site for the M. 

adductor mandibulae externus profundus, whereas the more anterior fossa, located on the 

laterosphenoid and the parietal, housed the M. pseudotemporalis superficialis (Holliday and 

Witmer, 2009). Unfortunately, the dorsolateral corners of both prootics are damaged, and 

thus we cannot determine the nature of the contact with the squamosals. CT data show that 

the prootic and opisthotic forms the inner ear cavity. 

 

Laterosphenoid. The left and right laterosphenoids are well preserved (Figs. 1-2). This bone 

has a ventral contact with the basisphenoid, and forms the ventral half of the medial 

supratemporal wall and anteromedial corner of the supratemporal fenestra (Fig. 2). Where the 

laterosphenoid forms the medial supratemporal wall, it contacts the anterior process of the 

parietal dorsally. As the laterosphenoid curves and forms the anteromedial supratemporal 

corner, it closely approaches the frontal (the anteromedial fossa ‘platform’), but is separated 
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by the parietal. Ventral to the contact with the prootic, the laterosphenoid has a posterior 

suture with the quadrate in the region of the trigeminal foramen. 

The trigeminal opening is a deep, funnel-like structure (Fig. 2, V). The surrounding 

fossa would have housed the trigeminal ganglion, and thus the various branches of the 

trigeminal nerve would have diverged from each other outside the endocranial cavity. This is 

also the case in other modern and extinct crocodylomorphs, along with close outgroup taxa 

(Holliday and Witmer, 2009), although some other archosaurs have evolved conditions in 

which the trigeminal branches exit the endocast separately and emerge through the bony 

braincase walls via individual foramina (e.g., Brusatte and Sereno, 2007; Witmer and 

Ridgely, 2009). In NHMUK PV OR 33095 the fossa extends only slightly posterior to the 

foramen to excavate a portion of the external surface of the quadrate, which differs from the 

expansive posterior extent of the fossa in metriorhynchids (Fernández et al., 2011). There is a 

deep groove extending anteroventrally from the trigeminal foramen on the external surface of 

the laterosphenoid, which transmitted the ophthalmic branch of the trigeminal nerve (CN V1). 

The groove extends far anteriorly before fanning out on the ventral surface of the frontal. A 

smaller, shallower triangular fossa borders the anterodorsal corner of the trigeminal foramen, 

which transmitted the maxillary branch of the trigeminal nerve (CN V2). These two nerve 

grooves are also seen in Pelagosaurus typus and metriorhynchids (Holliday and Witmer, 

2009; Fernández et al., 2011), and the nerves exit the trigeminal foramen in a similar pattern 

in modern crocodilians (Holliday and Witmer, 2009).  

Anterodorsal to the trigeminal foramen, and ventral to the pseudotemporalis fossa of 

the supratemporal region, there is a shallow and elongate concavity, which we interpret as the 

epipterygoid fossa. It is in the same location in Pelagosaurus typus and metriorhynchids 

(Holliday and Witmer, 2009; Fernández et al., 2011). Although the epipterygoid itself is not 

preserved in NHMUK PV OR 33095, the fossa indicates that it would have been present. 
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Epipterygoids are present in most archosaurs, including many extinct crocodylomorphs, but 

are lost in some eusuchians, including the modern species (Holliday and Witmer, 2009).  

 

Supraoccipital. The supraoccipital forms the dorsomedial part of the occipital region of the 

skull (Figs. 1-2). In posterior view, the supraoccipital is trapezoid-shaped, broader dorsally 

than ventrally. It has a pronounced concavity on its posterior surface, with a raised rim along 

its lateral and dorsal margins. The lateral rims form part of the occipital tuberosities (along 

with a raised region on the exoccipital-opisthotic complex) (Fig. 2, ot). The occipital 

tuberosities are paired processes also seen in other teleosaurids, such as Teleosaurus 

cadomensis (MNHN.F AC 8746; Jouve, 2009), Steneosaurus heberti (MNHN.F 1890-13), 

Steneosaurus obtusidens (NHMUK PV R 3168; Andrews, 1913), and Machimosaurus 

buffetauti (SMNS 91415; Martin and Vincent, 2013; Young et al., 2014a). They are 

somewhat similar to the tuberosities seen in dyrosaurid crocodyliforms (e.g. MNHN.F ALG 

1; Jouve, 2005), albeit less pronounced. Based on external examination, the supracoccipital of 

NHMUK PV OR 33095 appears to lack a nuchal crest running along the midline of the 

element, which would be unusual as the previously listed teleosaurids species all have this 

crest. However, there is still some matrix adhering to the bone, and CT data shows that the 

matrix is obscuring a low nuchal crest. 

 The supraoccipital contacts the parietal along its dorsal margin and the exoccipital-

opisthotic complex along its lateral margins, and also has a slight ventral contact with the 

exoccipital-opisthotic. In occipital view, the ventral margin of the supraoccipital forms the 

medial portion of the dorsal margin of the foramen magnum. However, within the foramen 

magnum there is a suture between the supraoccipital and the exoccipital-opisthotic, 

demonstrating that the supraoccipital overlies the exoccipital-opisthotic in this region. This 

overlapping morphology might explain why participation of the supraoccipital in the dorsal 
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margin of the foramen magnum is so variable within Thalattosuchia, as independent 

regressions of this overlap in different lineages could explain how the exoccipital-opisthotic 

complex sometimes separates the supraoccipital from the foramen magnum. 

 In dorsal view, the posterior surface of the supraoccipital is broadly exposed. This is 

the result of a ‘step’-like arrangement of the posterior skull, with the parietal terminating 

anterior to the supraoccipital, followed posteriorly by the exposure of the supraoccipital 

posterior face, followed by the thickened ventral rim of the supraoccipital (i.e. the foramen 

magnum dorsal rim), and finally the occipital condyle. This arrangement is seen in other 

teleosaurids, such as Teleosaurus cadomensis (MNHN.F AC 8746; Jouve, 2009), S. heberti 

(MNHN.F 1890-13) and Steneosaurus obtusidens (NHMUK PV R 3168; Andrews, 1913), 

and is present in the basal metriorhynchoid Pelagosaurus typus (NHMUK PV OR 32599; 

Pierce and Benton, 2006). This differs markedly from the condition in metriorhynchids, 

which have verticalized the occipital surface, such that the supraoccipital is rarely visible in 

dorsal view, or if it is, it is not as broadly exposed as in teleosaurids (e.g. Andrews, 1913; 

Young et al., 2010, 2012 2013; Fernández et al., 2011; Foffa and Young, 2014). 

 

Exoccipital-opisthotic. Based on examination of the occipital surface (Figs. 1-2), it is unclear 

whether the exoccipital and the opisthotic have fully fused to form an otoccipital. On the left 

side of this complex, there may be a faint suture proceeding from the lateral margin of the 

foramen magnum towards the hypoglossal foramen (= cranial nerve XII), then towards the 

foramen for cranial nerves IX-XI. This is not the first time the potential lack of fusion 

between these elements has been raised for thalattosuchians, as a possible suture between the 

exoccipital and opisthotic was noted for the metriorhynchid Torvoneustes coryphaeus (Young 

et al., 2013). If this is a suture, then the dorsal region would be the opisthotic (including the 

paroccipital processes and the contact with the parietal and supraoccipital), and the ventral 
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region would be the exoccipital (including the contact with the basioccipital and the 

contribution to the occipital condyle). 

 The exoccipital-opisthotic complex contacts the supraoccipital along its medial 

margin dorsally, and the parietal and squamosal along its dorsal margin lateral to the 

supraoccipital. Ventral to its contact with the supraoccipital, the exoccipital-opisthotic forms 

most of the foramen magnum, including the lateral walls, the dorsal wall (with the exception 

of the supraoccipital overlap at the occipital surface), and the ventrolateral corners. These 

paired ventrolateral projections form part of the occipital condyle, contacting the 

basioccipital. The suture between the exoccipital-opisthotic and the basioccipital continues 

ventrolaterally until it reaches the ventral margin of the skull. The exoccipital-opisthotic 

contacts the quadrate along its ventrolateral margin. This can only be seen on the right-side, 

as the left quadrate is incomplete. However, this suture is difficult to discern because of 

numerous cracks in the vicinity. Overall, the exoccipital-opisthotic is devoid of 

ornamentation, covers the majority of the occipital surface, and has a slightly convex external 

surface medial to the paroccipital processes. 

 Both paroccipital processes are preserved, although they are missing their distal ends. 

They are large, pronounced, and oriented horizontally in posterior view. The dorsal surface is 

slightly concave, with this concavity extending from the exoccipital-opisthotic contribution to 

the occipital tuberosities medially along the dorsal surface of the exoccipital-opisthotic 

complex. The ventral margin of this concave surface is sharply delimited by a ridge, which is 

contiguous with the thickened ventral rim of the supraoccipital. 

 There are several foramina for nerves and vessels on the posterior surface of the 

exoccipital-opisthotic. These are better preserved on the left side. The foramen magnum is 

the largest opening on the occipital surface, situated at the skull midline between the 

supraoccipital, the exoccipital-opisthotic, and the basioccipital. It is oval-shaped, at least 
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twice as wide mediolaterally than tall dorsoventrally. Lateral to the foramen magnum, and 

level with the dorsal margin of the occipital condyle, is a sub-circular foramen that 

transmitted the hypoglossal nerve (CN XII).  

Further lateral to the hypoglossal opening is a large foramen situated ventral to the 

proximal paroccipital process. We interpret this as transmitting either the vagus nerve (CN X) 

or a combination of the vagus, accessory (CN XI), and possibly glossopharyngeal (CN IX) 

nerves and associated vessels. Different workers have considered varying combinations of 

these nerves as passing through this foramen in other thalattosuchians (e.g., Wenz, 1968; 

Jouve, 2009; Fernández et al., 2011; Young et al., 2012, 2013; Herrera & Vennari, 2015). 

Unfortunately, in NHMUK PV OR 33095 the µCT data are not helpful in tracing this 

opening far internally into the endocranium, because the canal extending from the foramen 

enters the otoccipital sinus, disappears into this pneumatic chamber, and doesn’t clearly 

reconnect with the endocast. This indicates that the neurovascular bundle would have been 

surrounded by the sinus, as is also the case in Alligator mississippiensis (Dufeau and Witmer, 

2015). The lack of other large foramina on the occipital surface (except for a small one above 

the carotid opening, see below) suggests that the large foramen underneath the paroccipital 

process was most likely a multipurpose opening that transmitted more than just the vagus 

nerve. 

Ventrally and slightly laterally to the hypoglossal foramen, at the level of the ventral 

base of the paroccipital process, is a smaller, slit-like foramen. We suggest that if this small 

opening did transmit a cranial nerve, it most likely was for the hypoglossal nerve, although 

this is not clear because the slit can only be traced a few millimeters internally before 

disappearing in the CT slices. A much larger foramen opens immediately below the slit. This 

is for the internal carotid artery and it takes the form of a large, funnel-like structure that 

opens posteroventrally (Fig. 2, ic). It is located immediately along the ventral margin of the 
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braincase and lateral to the suture between the exoccipital-opisthotic and basioccipital. The 

internal carotid foramen is larger than the aforementioned openings for the cranial nerves. 

Unfortunately, the braincase is broken laterally on each side, so the cranioquadrate opening, 

which can often be large in thalattosuchians and is connected to the tympanic sinuses (e.g., 

Fernández et al., 2011), is not preserved. 

There is some potentially phylogenetically useful variation in the orientation of the 

nerve foramina in thalattosuchians. The presence of a large vagus (or multipurpose) foramen 

near the base of the paroccipital processes in NHMUK PV OR 33095 is shared with the 

teleosaurid Teleosaurus cadomensis (MNHN.F AC 8746; Jouve, 2009) and the basal 

metriorhynchoid Pelagosaurus typus (NHMUK PV OR 32599). Metriorhynchids lack a 

foramen at this location, but instead have a large opening for the vagus nerve positioned 

dorsolateral in relation to the internal carotid artery foramen (see Fernández et al., 2011; 

Young et al., 2013; Herrera and Vennari, 2015). It therefore appears that the position of the 

foramen shifts from a dorsolateral position (near the paroccipital process) in basal 

thalattosuchians to a ventromedial one (closer to the internal carotid artery foramen) in 

metriorhynchids. 

Furthermore, it has been suggested that the large external opening for the carotids on 

the posterior braincase is a synapomorphy of metriorhynchids (Pol and Gasparini 2009; 

Fernández et al., 2011). However, the opening is also enlarged in NHMUK PV OR 33095, as 

well as other teleosaurids (e.g., Teleosaurus cadomensis: Jouve, 2009:fig. 3) and basal 

metriorhynchoids (e.g., Pelagosaurus typus: Pierce and Benton, 2006), suggesting it is a 

wider thalattosuchian feature. The large size and position of the foramina at the ventral edge 

of the braincase in thalattosuchians does differ from the much smaller, more dorsally 

positioned openings in early crocodylomorphs such as Junggarsuchus sloani (Clark et al., 
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2004:fig. 2), Dibothrosuchus elaphros (Wu and Chatterjee, 1993:fig. 3), and Almadasuchus 

figarii (Pol et al., 2013:fig. 1).  

 

Occipital condyle. The occipital condyle is sub-circular in posterior view, slightly 

mediolaterally wider at its dorsal margin than ventrally (Figs. 1-2). There is a deep depression 

at the center of the posterior surface. The condyle is mostly formed by the basioccipital, with 

the exoccipital–opisthotics contributing only to the dorsolateral corners. The gap between the 

corners, filled by the basioccipital, comprises most of the dorsal margin of the condyle and 

the ventral margin of the foramen magnum. This is the normal condition within 

Thalattosuchia, and is seen in other teleosaurids, basal metriorhynchoids, metriorhynchine 

metriorhynchids and basal geosaurine metriorhynchids (Andrews, 1913; Pierce and Benton, 

2006; Lepage et al., 2008; Jouve, 2009; Foffa and Young, 2014). In derived geosaurine 

metriorhynchids, however, the exoccipital–opisthotic forms the entire dorsal margin of the 

occipital condyle (Plesiosuchus manselii Young et al., 2012; Torvoneustes coryphaeus 

Young et al., 2013). 

 

Basioccipital. In addition to constituting the majority of the occipital condyle, the 

basioccipital forms the ventromedial part of the occipital region of the skull (Figs. 1-2). The 

suture between the exoccipital–opisthotic and the basioccipital is clearly seen on the occipital 

condyle, and is also visibly laterally and ventrally to the condyle. Here, the lateral contact 

between the exoccipital-opisthotic and basioccipital is expressed as a subtle suture that 

projects ventrolaterally from the occipital condyle to the lateral margin of the basal tuber 

(=basioccipital tuberosity) (Fig. 2, bt). The left and right tubera extend ventrolaterally from 

the ventral edge of the braincase in posterior view. Between the tubera is a deep fossa, which 

houses a foramen that transmitted the medial pharyngeal tube and leads into a recess 
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underneath the occipital condyle that is part of the median pharyngeal sinus system (Fig. 2, 

mpf). This opening has various names in the literature, including the median Eustachian 

foramen (e.g., Jouve, 2009) and foramen intertympanicum (e.g., Pol et al., 2013). We prefer 

the simple term median pharyngeal foramen (e.g., Fernández et al., 2011). In ventral view, 

the tuber contacts the quadrate along much of its lateral margin. Also in ventral view, what 

remains of the basisphenoid can be seen contacting the ventral margins of both tubera. 

 

Basisphenoid. The basisphenoid is poorly preserved, but in ventral view it clearly contacts 

the basioccipital along its dorsal margin and the orbital process of the quadrate along its 

anterolateral margin (Figs. 1-2). Posteriorly, the basisphenoid broadens laterally and develops 

a ‘trident’ shape on its exposed ventral surface, consisting of three distinct prongs with 

notches between them. These house the medial pharyngeal canal and lateral (true) Eustachian 

tubes. A portion of the basisphenoid is also visible in occipital view, as the bone immediately 

ventral to the basal tubera of the basioccipital. The basisphenoid continues anteriorly as an 

elongate and narrow structure along the skull midline, which is broadly visible in ventral 

view. It is unclear if there is a separate parasphenoid or not in this region, so we are referring 

to this portion of the braincase as the basisphenoid for simplicity. Dorsally this region of the 

basisphenoid contacts the laterosphenoid. Anteriorly, the basisphenoid is damaged and 

reveals a hollow passage that housed the orbital arteries after they emerged from the pituitary 

fossa (see below).  

 

Quadrate. The quadrates are incompletely preserved (Figs. 1-2), with the right one much 

more complete than the left. The condylar region is oriented posteroventrally. The medial 

hemicondyle is noticeably smaller than the lateral hemicondyle, with a deep sulcus separating 

them. The articular surfaces of both hemicondyles are almost parallel and are oriented 
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dorsolaterally. In ventral view, the quadrate contacts the basal tuber along its medial margin. 

The orbital process of the quadrate overlaps the basisphenoid, and as with other 

thalattosuchians, this process remains free of bony attachment at its anteromedial surface 

(Holliday and Witmer, 2009; Jouve, 2009; Fernández et al., 2011). There is also a prominent 

crest (‘crest B’ of Iordansky, 1973) on the ventral surface of the bone, running from the 

lateral hemicondyle distally towards the orbital process. Within the supratemporal fenestra 

the quadrate forms the ventral half of the posterior supratemporal wall (Fig. 2). Dorsally the 

quadrate contacts the squamosals (although the squamosals are damaged for much of the 

contact), medially the prootic, and anteriorly and anteromedially the laterosphenoid. Because 

of damage, we cannot describe how the quadrate participates in the external otic aperture, 

cranioquadrate canal or infratemporal (= laterotemporal) fenestra, nor can we describe the 

sutural contacts with the jugal, quadratojugal, or pterygoid. CT data show that the quadrate 

forms much of the middle ear cavity.  

 

Internal cranial anatomy of Caiman crocodilius 

 

A three-dimensional model of the cranial endocast, inner ear, and associated nerves and 

vessels is shown in Figure 3. As the primary purpose of this reconstruction is to provide data 

from an extant taxon to which we can compare the Steneosaurus fossil braincase, we do not 

present a detailed verbal description of it here, but rather rely on our images to present the 

morphology. 

 

Internal cranial anatomy of NHMUK PV OR 33095 
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Our CT-based reconstruction of the cranial endocast, inner ear endocast (endosseous 

labyrinth and columella), associated nerves and vessels, and pneumatic cavities in NHMUK 

PV OR 33095 is shown in Figures 4-5. Because the brain of extant crocodiles and other 

reptiles does not entirely fill the endocranial cavity, the resulting cranial endocast is more 

accurately considered a cast of the dural envelope (including many dural venous sinuses) 

rather than the brain itself (e.g., Jerison, 1973; Hopson, 1979; Rogers, 1999; Witmer et al., 

2008). However, although the exact size and shape of the brain are unclear, many portions of 

the brain (such as the cerebral hemispheres and pituitary fossa) are identifiable, as are some 

of the cranial nerves and vessels that emanate from the brain. For ease of description we refer 

to these structures using Anglicized terms for the neuroanatomy under discussion, although it 

should be noted that these terms actually refer to endocranial osteological correlates of the 

neural structures. 

 

Cranial endocast. The endocast of NHMUK PV OR 33095 is incomplete, due to the 

breakage of the specimen anteriorly (Figs. 4-5). The break is located somewhere near the 

forebrain-midbrain juncture, meaning that the midbrain and hindbrain are present but the 

olfactory tracts and bulbs and other features of the forebrain are not preserved. The preserved 

portion of the endocast is long and narrow, similar to the shape in another teleosaurid 

specimen from which a latex endocast was constructed (Wharton, 2000), a teleosaurid 

specimen in which the endocranial cavity is visible in cross section (Owen, 1842: 83; Seeley, 

1880:pl. XXIV; Wilberg, 2015:fig. 7), and the metriorhynchids ‘Metriorhynchus’ cf. 

westermanni (Fernández et al., 2011), Dakosaurus cf. andiniensis (Herrera and Vennari, 

2015), and Cricosaurus araucanensis (Herrera et al., 2013). Modern crocodilians have a 

similar shape, although with greater flexures between the midbrain and hindbrain (cephalic 

flexure) and within the hindbrain (pontine flexure) (Colbert, 1946a; Witmer et al., 2008; 
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Dufeau and Witmer, 2015; Fig. 3). Because they have very subtle flexures, thalattosuchian 

endocasts appear tubular in shape, compared to the more kinked, sigmoidal endocasts of 

extant species.  

 The cerebral hemispheres can be clearly located on the endocast (Fig. 5, cer) . They 

are large, bulbous structures that project laterally, although not to the same extent as in 

modern crocodilians (Witmer et al., 2008; Fig. 3). The optic lobes are visible as subtle 

swellings directly posterior to the cerebral region. In most modern adult crocodilians, the 

optic lobes typically do not appear as discrete swellings on the endocast (e.g., Crocodylus 

johnsoni; Witmer et al., 2008), but in young specimens the optic lobes protrude further 

laterally (e.g., Caiman crocodilus: Fig. 3; Alligator mississippiensis: Dufeau and Witmer, 

2015). Ventral to the cerebrum is the pituitary fossa (Figs. 4-5, pf), which is anteroposteriorly 

elongate and dorsoventrally low, as in modern crocodilians (e.g., Witmer et al., 2008) and 

other thalattosuchians (e.g., Seeley, 1880; Fernández et al., 2011). The fossa is larger relative 

to the rest of the endocast than in extant taxa. In NHMUK PV OR 33095 and other 

thalattosuchians the pituitary fossa is oriented roughly parallel to the main axis of the 

endocast (with the lateral semicircular canal of the ear oriented horizontally for reference), 

whereas in modern crocodilians the fossa is often angled obliquely, in a posteroventral-

anterodorsal direction (Fig. 3; Witmer et al., 2008; Dufeau and Witmer, 2015). This may be 

related to the more flexed endocasts of these species, or a geometric consequence of the 

pituitary fossa being somewhat larger in thalattosuchians than in extant crocodiles. 

 The internal carotid arteries are the most salient arterial vessels associated with the 

endocast (Figs. 4-5, ic). The carotid canals extend from the large foramina on the posterior 

surface of the braincase, one on each side ventrolateral to the foramen magnum, and then 

continue posteriorly into the braincase, where their internal tracts are temporarily lost in the 

CT data as they pass through the pharyngotympanic sinus, as in extant crocodylians (Dufeau 
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and Witmer, 2015). The carotid tracts reemerge ventral to the endosseous labyrinth, where 

each carotid sharply deflects medially. The left and right carotid canals converge at the 

posterior end of the pituitary fossa (in the region of the hypophyseal recess) and continue into 

the fossa as a single large midline vessel. This architecture is similar to that known in other 

thalattosuchians (e.g., Fernández et al., 2011) and modern crocodilians (Fig. 3; e.g., Colbert, 

1946a; Witmer et al., 2008; Dufeau and Witmer, 2015). 

 All of the cranial nerves are visible in the CT data, although these are usually most 

discernable either near the external braincase surface (where they traverse the braincase 

through foramina) or near the endocast (where they emerge from the brain). The largest and 

most distinctive nerve is the trigeminal (cranial nerve V), the large ganglion of which would 

have been located outside of the endocranial cavity, within the huge fossa on the lateral 

surface of the braincase (see above) (Figs. 4-5). A large external trigeminal ganglion was also 

present in other thalattosuchians (e.g., Holliday and Witmer, 2009; Fernández et al., 2011), 

other early crocodylomorphs (e.g., Sphenosuchus acutus: Walker 1990), close 

crocodylomorph outgroups (e.g., Gracilisuchus stipanicicorum: Holliday and Witmer, 2009), 

and the extant crocodilians (e.g., Colbert, 1946a; Witmer et al., 2008; Dufeau and Witmer, 

2015). This is therefore a plesiomorphic feature of crocodylomorphs that they retained from 

their distant archosaurian ancestors.  

 The major nerves extending from the ventrolateral portion of the midbrain and 

passing near the pituitary fossa are difficult to trace. There is a set of narrow, paired nerves 

emerging from the ventral surface of the endocast anterior to the endosseus labyrinth, which 

extend anteriorly and are partially covered in ventral view by the large pituitary fossa (Fig. 

5). The oculomotor (CN III), trochlear (CN IV), and abducens (CN VI) nerves emerge from 

this region in Crocodylus johnsoni (Witmer et al., 2008). These structures in NHMUK PV 

OR 33095 could potentially be the oculomotor nerves, as large oculomotor nerves have been 
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identified in this area in ‘Metriorhynchus’ cf. westermanni (Fernández et al., 2011). 

However, they are located in a similar position to the abducens nerves in Pelagosaurus typus 

(Dufeau, 2011), and therefore we consider this to be the most likely identification. The nerves 

exiting the posterior surface of the braincase—CN IX to CN XII—can be traced in the CT 

data. We illustrate the best-preserved regions, where small portions of their tracts are seen to 

extend internally from the external foramina before becoming less distinct further internally 

(Figs. 4-5). As explained above, the neurovascular bundle leading internally from the vagus 

(or multipurpose) opening can be traced in the CT data, but disappears into the otoccipital 

sinus and is not seen to reemerge to meet the endocast.  

 There is a single midline hollow structure extending anteriorly from the basisphenoid 

sinus in the region where the carotids meet the pituitary fossa (Figs. 4,5, mpsd). It would have 

continued further anteriorly, as its internal tract is exposed at the broken anterior surface of 

the braincase. The identity of this structure is somewhat uncertain, as it is not present in 

Alligator mississippiensis, whose internal sinus system has been the subject of detailed 

description (Dufeau and Witmer, 2015), but is likely an anterior pneumatic diverticulum of 

this sinus (which is part of the median pharyngeal sinus system and pneumatized by the 

median pharyngeal tube between the basioccipital and basisphenoid posteriorly) or 

vasculature leading into the sinus. A similar sinus diverticulum has been noted in the 

thalattosuchian Pelagosaurus typus (Dufeau, 2011). 

Furthermore, there are large, thick, paired vessels extending anteriorly from the 

pituitary fossa (Figs. 4-5, oa). These continue to the broken anterior surface of the specimen, 

so they would have extended further anteriorly in life. These are not present (or at least not as 

large) in modern crocodilians (Colbert, 1946a; Witmer et al., 2008; Dufeau and Witmer, 

2015) and are not visible in recently studied thalattosuchians whose braincases are either not 

well preserved or are broken too far posteriorly to contain these vessels (e.g., Wharton, 2000; 
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Fernández et al., 2011; Herrera and Vennari, 2015). They were, however, noticed by Seeley 

(1880:pl. XXIV) in his study of a teleosaurid skull in which the endocranial cavity was 

visible in cross section. He identified them as the optic nerves (CN II), but recent work on 

modern crocodilians shows that the optic nerves actually project from the endocast much 

further anterodorsally, in front of the cerebrum and far anterior to the pituitary fossa (e.g., 

Witmer et al., 2008; Dufeau and Witmer, 2015). Instead, we interpret these structures as the 

orbital arteries, because these vessels extend anteriorly out of the pituitary fossa in extant 

diapsids (Porter, 2015). These large vessels extending anteriorly from the pituitary fossa are 

approximately the same size as the internal carotids from which they branch posteriorly 

within the fossa.  

There is a large paired venous sinus above the hindbrain that is continuous with the 

dural space (Figs. 4-5, dvs). This represents a portion of the dural venous sinus system that 

was described in a teleosaurid by Wharton (2000) and subsequently noted in metriorhynchid 

thalattosuchians (Fernández et al., 2011; Herrera and Vennari, 2015), but is not present in 

such a hypertrophied form in modern crocodilians (Fig. X; Witmer et al., 2008; Dufeau and 

Witmer, 2015). In NHMUK PV OR 33095 the venous sinus on each side connects to the 

dorsal portion of the endocast in the region between the endosseous labyrinth and trigeminal 

foramen. This venous structure is the posterior portion of the transverse sinus (middle 

cerebral vein) system that is a very consistent element of the encephalic venous drainage 

system in archosaurs, albeit reduced in extant crocodilians (Wharton, 2000; Sampson and 

Witmer, 2007; Witmer et al., 2008; Witmer and Ridgely, 2009; Porter and Witmer, 2015). In 

thalattosuchians, this posterior branch (the posterior middle cerebral vein) is hypertrophied. 

In Pelagosaurus typus (LMW, pers. obs.), the vein has a branch that reaches the occiput, 

which is very common in archosaurs; this is probably also the case in NHMUK PV OR 

33095, although the CT data are not entirely clear on this point. However, the major portion 

Page 25 of 55

John Wiley & Sons, Inc.

The Anatomical Record

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

of this vein in the thalattosuchians ‘Metriorhynchus’ cf. westermanni (Fernández et al., 2011) 

and Pelagosaurus typus (pers. obs.) is directed laterally to open into the supratemporal fossa 

via a large aperture and then continues on to open into the middle-ear region. The branch 

leading to the supratemporal opening would correspond to the dorsal head vein of other 

diapsids (Sampson and Witmer, 2007; Witmer et al. 2008) or the temporoorbital vein of 

extant crocodilians (Porter, 2015). Although not fully illustrated here, the CT data for 

NHMUK PV OR 33095 do indeed show that posterior middle cerebral vein does open via a 

large dorsal head vein aperture in the posterior portion of the supratemporal fossa. However, 

unlike in ‘Metriorhynchus’ cf. westermanni (Fernández et al., 2011) and Pelagosaurus typus 

(LMW, pers. obs.), there is no evidence that vein reaches the middle-ear space or any of its 

pneumatic diverticula. 

 

Pneumatic sinuses. The braincase of NHMUK PV OR 33095 is pneumatic, with internal 

sinuses filling many of the bones surrounding the endocast. Most of these sinuses are in the 

same positions as those identified in modern crocodilians by Dufeau and Witmer (2015), and 

therefore we use their terminology here. As in the extant taxa, the braincase sinuses of 

NHMUK PV OR 33095 can be divided into two systems: a median pharyngeal sinus system 

underneath the endocast that communicates with the pharynx via a midline median 

pharyngeal tube (sometimes called the ‘median Eustachian tube’), and a pharyngotympanic 

sinus system on each side of the endocast, which communicates with the pharynx via a lateral 

(true) Eustachian tube and is intimately associated with the middle ear (Witmer et al. 2008; 

Dufeau and Witmer 2015). 

 The median pharyngeal sinus excavates the interior of the basisphenoid (Fig. 4, mps). 

The median pharyngeal tube enters the recess by passing through the medial pharyngeal 

foramen, the large opening on the ventral surface of the braincase between the basioccipital 
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and basisphenoid (Fig. 4, mpt). The sinus fills nearly the entire posterior portion of the 

basisphenoid, terminating anteriorly where the internal carotids meet the endocast. 

Extensions of the sinus, the subcarotid recesses, extend laterally to underlie the carotids in the 

region where they curve medially to enter the pituitary fossa (Fig. 4, scr). The subcarotid 

recesses are greatly expanded in NHMUK PV OR 33095. These recesses become larger 

during ontogeny in Alligator (Dufeau and Witmer, 2015). A median pharyngeal sinus system 

is also present in ‘Metriorhynchus’ cf. westermanni (Fernández et al., 2011) and Dakosaurus 

cf. andiniensis (Herrera and Vennari, 2015), and the large median pharyngeal foramen seen 

in many other early crocodylomorphs, visible externally without the aid of CT, indicates that 

this sinus system is a common feature of crocodylomorphs (e.g., Nesbitt, 2011; Pol et al., 

2013). 

 The pharyngotympanic sinus system is much more extensive and complex than the 

relatively simple midline medial pharyngeal sinus. Dufeau and Witmer (2015) have shown 

that the pharyngotympanic system consists of seven main diverticula in modern Alligator, 

which throughout ontogeny generally become larger, begin to coalesce, and ultimately merge 

together into an expansive sinus. Some, but not all, of these diverticula are present in 

NHMUK PV OR 33095. These recesses are discussed individually below. 

(1) The basioccipital diverticulum that fills the basal tubera and part of the 

surrounding bone is absent, as the basioccipital is solid internally. (2) The recessus 

epitubericus, a finger-like cavity that fits between the trigeminal ganglion (above) and 

internal carotid (below) and extends anterior to the internal carotids in ventral view, is also 

absent. (3) Because the pterygoid is unknown in NHMUK PV OR 33095, it is not clear if 

there was a pterygoid diverticulum. However, as this extends from the recesseus epitubericus 

into the pterygoid in Alligator, the lack of the recessus epitubericus in NHMUK PV OR 

33095 suggests that, if present, a pterygoid diverticulum must have emerged from another 
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source. (4) The intertympanic diverticulum, which pervades the prootic and supraoccipital 

above the foramen magnum and occasionally extends into the parietal in Alligator, is absent. 

The enlarged dorsal dural venous sinus occupies a similar position (although it has a different 

source), so this may be precluding the development of an intertympanic sinus. 

(5) There is a large prootic diverticulum filling much of the prootic posterior to 

trigeminal ganglion and immediately anterior to the inner ear canals (Fig. 4, ptspd). This 

appears to be equivalent to what Fernández et al. (2011) refer to as the ‘middle ear cavity’ in 

‘Metriorhynchus’ cf. westermanni, as it occupies the same part of the prootic surrounding the 

inner ear and posterior to the ganglion. Unlike the case in Alligator, there is no external fossa 

on the prootic leading into this recess (Dufeau and Witmer, 2015: fig. 9). 

(6) There is limited pneumaticity in the quadrate, the result of a suspensorium 

diverticulum (Fig. 4, ptssd). Dufeau and Witmer (2015) described how this diverticulum 

consists of two separate but convergent diverticula in Alligator: an infundibular diverticulum 

filling much of the main body of the quadrate and a quadrate diverticulum that hollows out 

the quadrate condyles and sends a thin extension, the siphonium, out through an external 

foramen on the condyles and into the articular bone. The infundibular diverticulum is clearly 

present in NHMUK PV OR 33095. It pervades most of the ventral portion of the quadrate 

body, and communicates with the prootic diverticulum anteriorly and dorsally, otoccipital 

diverticulum posteriorly and medially, and medial pharyngeal sinus ventrally. This is 

equivalent to ‘cavity 2’ of Fernández et al. (2011), which they identified in ‘Metriorhynchus’ 

cf. westermanni. However, there is no sign of a quadrate diverticulum in NHMUK PV OR 

33095. The quadrate condyles are solid internally and there is no external foramen for 

transmitting the siphonium.  

(7) There is a large otoccipital diverticulum that fills the otoccipital lateral to the 

foramen magnum, completely surrounding the neurovascular bundle for nerves IX-XI (Fig. 4, 
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ptsod). This recess occupies only the ventral half of the paroccipital process, making it much 

less extensive than the condition in all stages of Alligator ontogeny, in which the recess fills 

the entire depth of the otoccipital (Dufeau and Witmer, 2015). ‘Metriorhynchus’ cf. 

westermanni also has an otoccipital diverticulum limited to the ventral half of the paroccipital 

process, which may indicate that this is a common feature of thalattosuchians (Fernández et 

al., 2011). In NHMUK PV OR 33095 the otoccipital recess is divided into dorsal and ventral 

partitions, which are separate from each other posteriorly but merge anteriorly. The bundle 

for the vagus nerve and associated structures leads into the dorsal partition. Based on the 

condition in ‘Metriorhynchus’ cf. westermanni, it is likely this dorsal partition communicated 

with the expansive dorsal dural venous sinus above the endocast (Fernández et al., 2011).  

 

Inner ear. The endosseous labyrinth is similar in shape to that of modern crocodilians, with a 

triangular vestibular apparatus dorsally (consisting of the semicircular canals and sacculus) 

and an elongate cochlear (lagena) duct ventrally, which is dorsoventrally deeper than the 

vestibular apparatus (Fig. 4-6; Owen, 1850; Colbert, 1946b; Witmer et al., 2008; Dufeau and 

Witmer, 2015). As in most living species, the cochlear duct is directed medially, with a slight 

curvature along the posterior margin. The three semicircular canals are approximately 

orthogonal to each other, and the anterior and posterior canals meet at the common crus, 

which is approximately the same diameter as the canals themselves (Table 1). The anterior 

semicircular canal is expanded very slightly further anteriorly than the posterior canal is 

posteriorly. As a result, there is a slightly larger gap between the anterior canal and the 

common crus than there is between the posterior canal and the crus. Unlike in modern 

crocodilians (Fig. 7) and most other archosaurs, however, the anterior and posterior 

semicircular canals extend to the same level dorsally when seen in lateral view (e.g., Witmer 

et al., 2008: fig. 6.5). It should be noted that modern crocodilians are unusual among fossil 
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and extant archosaurs in having an anterior canal that is only marginally expanded dorsally 

relative to the posterior canal. 

Using the methods of Walsh et al. (2009), we estimate that NHMUK PV OR 33095 

had a mean hearing sensitivity (MHS) of 1500 Hz, and a hearing range (HR) of 2400 Hz (Fig. 

8). These values are towards the higher end of the spectrum of hearing sensitivity known in 

living crocodilian species (Crocodylus acutus: MHS 1650 Hz, HR 2700 Hz [Wever, 1978]; 

Alligator mississipiensis: MHS 550 Hz, HR 900 Hz [Wever, 1978]; Caiman crocodylus: 

MHS 1150 Hz, HR 1700 Hz [Manley, 1990]). 

 

DISCUSSION 

 

The CT data for Steneosaurus cf. gracilirostris (NHMUK PV OR 33095) provide important 

new information on the ears, cranial sinuses, and cranial vascularization of extinct 

crocodylomorphs. This, in turn, provides insight into the origin of modern crocodilian 

morphologies and helps reveal how the peculiar extinct thalattosuchians were modifying their 

senses and cranial systems as they transitioned into an aquatic habitat.  

 

Hearing and balance. Some of the most striking evidence comes from the endosseous 

labyrinth, which would have housed the membranous inner ear in life. NHMUK PV OR 

33095 has a relatively elongate cochlear duct, the part of the inner ear related to hearing. An 

elongate cochlear duct is known to have been present in the Permian basal diapsid reptile 

Youngina capensis, pointing to an early origin for enhanced hearing frequency sensitivity in 

terrestrially-adapted diapsids (Walsh et al., 2014), the larger group of reptiles to which 

lizards, crocodylomorphs, and birds belong. However, extant diapsid clades (e.g., squamates, 

rhynchocephalians and, if included within Diapsida, turtles) possess relatively short cochlear 
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ducts (Walsh et al., 2009), and the trend toward duct elongation appears to be largely 

confined to Archosauromorpha (the diapsid subclade including crocodylomorphs, dinosaurs, 

pterosaurs, and birds). This elongation was presumably present in fully terrestrial stem 

archosauromorphs, and the relatively elongate cochlear duct in Steneosaurus cf. gracilirostris 

must therefore be retained from a fully terrestrial crocodilian ancestor. This fits with our 

current understanding of crocodylomorph phylogenetics, as the oldest and most primitive 

members of the group are terrestrial species such as Sphenosuchus and Terrestrisuchus (e.g., 

Nesbitt, 2011).  

The length of the cochlear duct is strongly correlated with, and thus predictive of, best 

hearing range and mean hearing frequency in extant birds and reptiles (Walsh et al., 2009). 

When we add NHMUK PV OR 33095 to a dataset with a variety of modern taxa, we estimate 

its hearing sensitivity to be towards the known upper range of living crocodilian auditory 

sensitivity values (Fig. 8). Furthermore, the cochlear duct length of NHMUK PV OR 33095 

is located within a point cloud of many other taxa, meaning that it is not an outlier and not 

greatly different in relative length to the cochleae of modern reptiles and birds. This strongly 

suggests that hearing in air remained important to Steneosaurus cf. gracilirostris, and that 

only limited, if any, adaptation to sound transmission in water had occurred in this 

thalattosuchian. Further information from the middle ear ossicle would be useful for 

determining whether there are differences in impedance matching between terrestrial (fossil) 

and aquatic/semi-aquatic crocodilians, but to our knowledge this has yet to be tested 

quantitatively. 

 As with the auditory region of the labyrinth, the vestibular apparatus of NHMUK PV 

OR 33095 is not greatly different to that seen in living crocodilians. The vestibular system in 

extinct archosaurs has received a great deal of attention in recent years thanks to the advent of 

µCT approaches, but much of this has centered on birds and dinosaurs, with far fewer studies 
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of fossil crocodilians and stem archosaurs (Walsh et al., 2014). Although variation in 

vestibular system morphology over archosaur evolution is presently incompletely known, a 

strong trend toward anterior semicircular canal expansion is clearly apparent in bipedal 

archosaurs (Georgi et al., 2013), and also in pterosaurs (Witmer et al., 2003). This has been 

attributed to sensitivity to the pitching motion of the head (Sipla, 2007), but some expansion 

of the anterior canal is also apparent in quadrupedal dinosaurs and crocodiles (Witmer et al., 

2008). The reason for this is unclear, but anterior canal expansion may also be positively 

correlated with head mass (Georgi et al., 2013). 

In NHMUK PV OR 33095, the anterior semicircular canal is only slightly longer than 

the posterior canal (Table 1), suggesting sensitivity to pitching was less important for this 

taxon. This may be consistent with a more aquatic lifestyle involving reduced head rotation 

along the sagittal plane. However, although the lateral semicircular canal is slightly longer 

than the anterior canal, its larger cross sectional diameter (Table 1) and relatively straight and 

uncurved morphology around the sacculus seem poorly optimized for sensitivity. Another 

possibility is that the neck of Steneosaurus cf. gracilirostris was less flexible than the neck of 

most living crocodiles, removing some of the requirement for sensitivity to pitch and yaw 

through increased coupling with the trunk (but see Spoor et al., 2002 for an alternative view 

of this situation in cetaceans). However, the cervical flexibility of teleosaurids appears to 

have been comparable with that of living crocodilians, and reduction in flexibility would have 

had important implications for feeding behavior in this longirostrine taxon. We suspect that 

this canal circumference reduction instead relates to lower head mass relative to other 

crocodilians, due to a more gracile and lighter rostrum. This possibility is supported by the 

reduced canal expansion in the longirostrine Tomistoma and Gavialis, relative to broad-

snouted living crocodilians (Fig. 7). 
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Cranial pneumaticity. NHMUK PV OR 33095 possesses some, but not all, of the standard 

pharyngotympanic sinuses of modern crocodilians (Dufeau and Witmer, 2015). The 

basioccipital diverticulum, recessus epitubericus, and intertympanic diverticulum are absent. 

Furthermore, the suspensorium diverticulum is greatly reduced compared to modern species, 

such that it only occupies a portion of the quadrate and does not extensively hollow out the 

bone and extend posteriorly from the braincase, out through the siphoneal opening on the 

quadrate condyle and into the articular, as in the extant taxa. Only the prootic and otoccipital 

diverticula are similar in their position and large sizes to the same recesses in the living 

species. What is particularly interesting is that all of the recesses lacking in NHMUK PV OR 

33095 appear very early in the ontogeny of Alligator and are uniformly present in all studied 

specimens (Dufeau and Witmer, 2015), meaning that their absence in the teleosaurid 

specimen is not likely due to ontogeny or individual variation. 

 It is difficult to explain why NHMUK PV OR 33095 had limited pneumaticity 

compared to modern crocodilians, but there are several possibilities. It may be that a more 

limited set of pharyngotympanic sinuses is the ancestral condition for Crocodylomorpha, and 

thus Steneosaurus cf. gracilirostris is exhibiting this morphology because of its relatively 

basal position in the family tree. Perhaps extensive sinuses evolved in concert with a quadrate 

that is more firmly sutured to the remainder of the braincase (see discussion in Dufeau and 

Witmer [2015]), which occurred later in crocodylomorph evolutionary history. Alternatively, 

it is possible that NHMUK PV OR 33095 evolved from ancestors with a more extensive 

array of pharyngotympanic sinuses similar to modern crocodilians, but it (and possibly other 

thalattosuchians) apomorphically lost some of the diverticula. If so, this could potentially be 

related to lifestyle, perhaps due to changes resulting from the transition to a more aquatic 

habitat such as increased reliance on diving to catch prey, changes in buoyancy, or alterations 

to the hearing system. Third, there may be a link with diet, as Dufeau and Witmer (2015) 
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observed that feeding specialists with long snouts and enlarged adductor chambers, like 

modern gharials, exhibit a reduction in the number and extent of diverticula, whereas feeding 

generalists, like the extinct sebecids, have more expansive sinuses. Although the functional 

link between sinus morphology and diet is unclear, it is noteworthy that teleosaurids are 

gharial-like in morphology, and probably had a similar diet, so this could explain the 

moderate sinuses. Finally, it may be that NHMUK PV OR 33095 is simply an unusual 

individual in a species or clade that is rife with variation. This may be unlikely, but we note 

that modern Alligator exhibits more extensive pneumaticity than Crocodylus (Witmer et al., 

2008; Dufeau and Witmer, 2015). Testing these hypotheses will require CT-based sinus 

reconstructions for other thalattosuchians and, critically, other basal crocodylomorphs such as 

‘sphenosuchians’ that will give insight into the primitive conditions of the clade and 

variability among closely related taxa.  

 

Vasculature and salt glands. Among the most noticeable internal features of NHMUK PV 

OR 33095 are the enlarged internal carotid and orbital arteries. These two vessels are 

functionally linked, as the carotids enter the pituitary fossa posteriorly, and then the orbital 

arteries emerge from the fossa and continue anteriorly towards the snout. Therefore, the large 

size of one is probably linked to the enlargement of the other.  

Previously, it has been suggested that enlarged internal carotids (as indicated by large 

foramina on the posterior surface of the braincase) are diagnostic of metriorhynchids, but 

here we show that they are also present in teleosaurids. Thus, large internal carotids appear to 

be a thalattosuchian feature. Why are these arteries so large in thalattosuchians? Branches of 

the internal carotids supply the salt glands in some modern vertebrates, and the large size of 

the carotids in metriorhynchids has been explained as a mechanism for increasing blood flow 

to the glands, which are known to have been present based on CT data (e.g., Herrera et al., 
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2013). We therefore suggest that these large vessels in NHMUK PV OR 33095 also supplied 

large salt glands. This can be tested further by CT scanning teleosaurid specimens with more 

complete snouts, to determine whether the osteological correlates of metriorhynchid salt 

glands are also present. 

Previous studies have considered large salt glands to be a unique adaptation of 

metriorhynchids among basal crocodylomorphs, an integral component of their transition to a 

fully marine existence (e.g., Fernández and Gasparini, 2000, 2008; Gandola et al., 2006; 

Fernández and Herrera, 2009; Herrera et al., 2013). If teleosaurids like Steneosaurus cf. 

gracilirostris also possessed large salt glands, this would indicate that the glands evolved first 

in semi-aquatic thalattosuchians that were still well adapted for hearing sounds on land (see 

above), not just in the fully marine species. Or, perhaps the salt glands evolved even earlier in 

crocodylomorph phylogeny, in terrestrial taxa, and thus were a ‘pre-adaptation’ that helped 

thalattosuchians become so successful in semi-aquatic and pelagic niches. This can be tested 

by CT scanning a wider range of basal crocodylomorphs to determine if osteological 

correlates of salt glands are present. 

 

Transition from semi-aquatic to aquatic habitats. Teleosaurid thalattosuchians like 

Steneosaurus cf. gracilirostris were semi-aquatic animals, closely related to the pelagic 

metriorhynchids and proxies for the ancestral morphologies and behaviors that were modified 

as metriorhynchids transitioned into a fully aquatic niche. CT data for NHMUK PV OR 

33095 indicate that teleosaurids had already developed several signature cranial features of 

metriorhynchids, such as a large dorsal dural venous sinus, enlarged internal carotids, and 

potentially a salt gland. Furthermore, in overall morphology, the braincase of Steneosaurus 

cf. gracilirostris is remarkably similar to those of metriorhynchids (e.g., Pol and Gasparini, 

2009; Fernández et al., 2011). This indicates that there was no great morphological gulf in 
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endocranial anatomy between these two groups of thalattosuchians, and some of the features 

that later permitted metriorhynchids to successfully invade the aquatic realm were first 

developed in the semi-aquatic teleosaurids and other basal thalattosuchians. 

 Future work should focus on detailed internal endocranial descriptions of 

metriorhynchid braincases, using CT data. This will hold the key to determining how other 

features of the skull and sensory systems were modified as metriorhynchids moved into the 

open water. Most problematically, little is currently known about the inner ears and 

pharyngotympanic sinuses of metriorhynchids, so it is unclear whether they shared with 

NHMUK PV OR 33095 an ear that was still well attuned to hear on land, and if not when an 

ear better equipped to function in the water evolved. Likewise, changes in semicircular canal 

circumference may be expected in metriorhynchids as their heads became increasingly 

coupled with their bodies as cervical flexibility was lost. It is also uncertain whether 

metriorhynchids shared with NHMUK PV OR 33095 the same limited array of 

pharyngotympanic sinuses relative to modern crocodilians, and if there were detailed 

differences between the sinus systems of teleosaurids and metriorhynchids that could be 

explained by the latter’s unusual habitat. As more CT data become available for teleosaurids 

and metriorhynchids, these thalattosuchians may emerge as something of a model system for 

understanding how anatomy changes during major evolutionary transitions in deep time.  
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FIGURE CAPTIONS 

 

Fig. 1. Braincase of the teleosaurid thalattosuchian Steneosaurus cf. gracilirostris (NHMUK 

PV OR 33095) in dorsal (A), ventral (B), posterior (C), anterior (D), right lateral (E), and left 

lateral (F) views. Scale bar equals 5 cm. 

 

Fig. 2. Photos and line drawings of the braincase of the teleosaurid thalattosuchian 

Steneosaurus cf. gracilirostris (NHMUK PV OR 33095) in posterior (A), right lateral (B), 

and right ventrolateral oblique (C) views. Scale bar equals 5 cm. Abbreviations: bo, 

basioccipital; bs, basisphenoid; bt, basal tubera; fr, frontal; ic, internal carotid foramen; ls, 

laterosphenoid; mpf, median pharyngeal foramen; ot, occipital tuberosity; par, parietal; pr, 

prootic; q, quadrate; so, supraoccipital. Roman numerals designate cranial nerves. 

 

Fig. 3. Internal endocranial anatomy of the extant spectacled caiman, Caiman crocodilus 

(FMNH 73711). Endocranial features illustrated inside transparent skull (A), with scale bar 

equaling 2 cm. Endocranial features illustrated in anterior (B), posterior (C), right lateral (D), 

left lateral (E), dorsal (F), and ventral (G) views. Abbreviations: cd, cochlear duct; cer, 

cerebrum; col, columella (=stapes); el, endosseous labyrinth; ic, internal carotid artery; pf, 

pituitary fossa; vc, venous canal. Roman numerals designate cranial nerves. 

 

Fig. 4. Internal endocranial anatomy of the teleosaurid thalattosuchian Steneosaurus cf. 

gracilirostris (NHMUK PV OR 33095), derived from CT scan data. The specimen is 

illustrated in dorsal (A), ventral (B), posterior (C), anterior (D), right lateral (E), and left 

lateral (F) views. Scale bar equals 5 cm. Abbreviations: dvs, dorsal dural venous sinus; el, 

endosseous labyrinth; en, cranial endocast; ic, internal carotid artery; mpts, median 
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pharyngeal sinus; mpt, median pharyngeal tube; oa, orbital artery; pf, pituitary fossa; ptsod, 

pharyngotympanic sinus otoccipital diverticulum; ptspd, pharyngotympanic sinus prootic 

diverticulum; ptssd, pharyngotympanic sinus suspensorium diverticulum; scr, subcarotid 

recess extension of the median pharyngeal sinus. Roman numerals designate cranial nerves. 

 

Fig. 5. Cranial endocast, endosseous labyrinth, and endocranial nerve and vascular structures 

of the teleosaurid thalattosuchian Steneosaurus cf. gracilirostris (NHMUK PV OR 33095), 

derived from CT scan data. Figures are in dorsal (A), ventral (B), posterior (C), anterior (D), 

right lateral (E), and left lateral (F) views. Scale bar equals 5 cm. Abbreviations: cer, 

cerebrum; dvs, dorsal dural venous sinus; el, endosseous labyrinth; ic, internal carotid artery; 

oa, orbital artery; pf, pituitary fossa. Roman numerals designate cranial nerves. 

 

Fig. 6. Endosseous labyrinth of the teleosaurid thalattosuchian Steneosaurus cf. gracilirostris 

(NHMUK PV OR 33095), derived from CT scan data. Scale bar equals 1 cm. Abbreviations: 

asc, anterior semicircular canal; cc, common crus; cd, cochlear duct; lsc, lateral semicircular 

canal; psc, posterior semicircular canal. 

 

Fig. 7. Comparative selection of left endosseous labyrinths segmented from extant 

crocodilian taxa using CT data. A, Alligator mississippiensis; B, Caiman crocodilus; C, 

Gavialis gangeticus; D, Tomistoma schlegelii; E, Crocodylus acutus; F, C. intermedius; G, C. 

johnsoni; H, C. moreletii. 

 

Fig. 8. Hearing sensitivity estimates for Steneosaurus cf. gracilirostris derived from the 

methods of Walsh et al. (2009). 
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TABLES 

 

Table 1. Dimensions and angular measurements of the brain cavity endocast and endosseus 

inner ear. Abbreviations: ASSC, anterior semicircular canal; ASSC/PSSC, intersection angle 

between the canals; ASSC/BA, intersect angle between ASSC and BA; BA, main (sagittal) 

brain axis; BCE, brain cavity endocast; ECD, endosseous cochlear duct; LAB, whole 

labyrinth; LSSC, lateral semicircular canal; OW, oval window; PSSC, posterior semicircular 

canal; PSSC/BA, intersect angle between PSSC and BA; All linear measurements are in 

millimeters, rounded to tenths of a millimeter and collected using Materialise Mimics 17.0. 

Measurements marked with an asterisk are averages of left and right labyrinth values. 

 

  Length  Width  Depth  Diameter Deg. Volume 
BCE  76.5 mm  22.8 mm  22.8 mm  ——  —— 8612.7 mm

3
 

ASSC  18.1 mm  ——  ——  2.0 mm  —— —— 

LSSC  20.4 mm  ——  ——  3.8 mm  —— —— 

PSSC  16.0 mm  ——  ——  2.0 mm  —— —— 

ASSC/PSSC ——  ——  ——  ——  94 —— 

ASSC/BA* ——  ——  ——  ——  51 —— 

PSSC/BA* ——  ——  ——  ——  70 —— 

ECD  13.8 mm  ——  ——  ——  —— —— 

OW*  ——  ——  ——  5.9 mm  —— —— 

LAB  ——  ——  ——  ——  —— 885.7 mm3 
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