645 research outputs found

    Южный океан – суровая морская окрестность ледяного континента

    Get PDF
    The latest in a series of Great Geographical Discoveries was the finding of a southern ice continent in 1820. It was long expected, but very late for different reasons. Among the main ones are the physical and geographical characteristics of the Southern Polar Region of the Earth, which was discovered much earlier than the Northern one. Geographers and sailors, confident in the polar symmetry of the planet's surface, found it difficult to imagine the location of the still unknown continent so close to the South Pole. In addition, the vast belt of water and ice in the Southern Ocean surrounding Antarctica was (and still is) a serious obstacle to safe navigation. Other reasons were the results of James Cook's Second circumnavigation of the world in 1772­1775 to search for the Southern Mainland. In 1773, Captain D. Cook on the ship "Resolution" for the first time crossed the Southern Arctic Circle and reached 71° s. s. He considered the voyage in the Southern Ocean quite successful: the Southern hemisphere was sufficiently explored and the search for the Southern continent was put to an end. The authority of the English navigator was so high that nobody tried to refute his opinion for almost half a century. It required not only the courage of scientific foresight, but also the power of a state with a developed shipbuilding industry, skilled sailors and experience of long successful voyages in the World's oceans. At the beginning of the XIX century, Russia having the status of the Ocean Power possessed all this. According to the plan of the Russian Navy Department, the Russian Antarctic Expedition of 1819–1821 was aimed at implementation of scientific exploration in the least studied and most inaccessible high latitudes of the Southern Ocean. One of the participants in the preparation of the expedition, Captain Irank I.F.Krusenstern, wrote that this expedition "is for exploring the countries around the South Pole with greater accuracy than how much is known about them to this day...". In search of Antarctica, the naval sloops “Vostok” and “Mirny” had to cross the "roaring forties" and "furious fiſties" of the southern latitudes and overcome the belt of driſting icebergs and polar ices.Пояс бурных вод, льдов и айсбергов Южного океана – суровое препятствие навигации. Это повлияло на итоги второго кругосветного плавания Д. Кука в 1772–1775 гг. Кук считал плавание успешным: Южное полушарие достаточно исследовано и поискам Южного континента положен конец. Открытие шестого материка русскими было предопределено господствовавшими научными воззрениями на соотношение океана и суши на Земле и симметрию её полярных областей. Русские военные моряки на шлюпах «Восток» и «Мирный» под командованием Ф.Ф. Беллинсгаузена в беспримерном кругосветном плавании в Южном океане в 1819–1821 гг. открыли первые антарктические земли – остров ПетраI и Землю Александра I в широтах 68–69°, что уже тогда позволило наметить северные границы Антарктиды

    Десять лет мониторинга климатически значащих термических характеристик поверхности Южного океана на основе прямых и спутниковых наблюдений

    Get PDF
    The hydrology of the Southern Ocean is characterized by several oceanic fronts that together form the largest Antarctic Circumpolar Current. The methodology of synoptical monitoring of fronts is based on observations during the seasonal maritime operations for supply of Russian Antarctic stations. It happens by use of continuous registrations of variability of horizontal gradients of temperature of sea surface layer (SSLT) in situ, and horizontal gradients of surface temperature (SST) from satellite infrared (IR) data, which are taken in real-time on board of research vessel. This makes possible more detailed definition of the horizontal gradients of thermic characteristics and latitudinal location of the fronts. It can be done by means of underway data of SSLT from vessel’s automatic meteorological station, with simultaneous GPS-registration of their spatial location, on the one side; and by precise definition of geographical position of fronts zones of SST from satellite high resolution IR-images of the ocean surface, on the other side. Such data obtained during regular sub-meridional voyages of research-supply vessels between Africa and Antarctica, helps more confident than before to judge about presence/absence of trends in inter-annual changes in the latitudinal location of the main fronts in the Southern Ocean. Such a trends can be considered as an evidence of substantial change of water circulation, and as the manifestations of global warming of the sea surface layer. Within Indian sector of the Southern Ocean during 2007–2016 was registered a trend in annual shifts of seasonal positions of climatic fronts to the south.Характерная черта гидрологии поверхностных вод Южного океана — множественность фронтальных разделов водных масс различного происхождения. Главные из этих фронтов формируют крупнейшее в Мировом океане Антарктическое циркумполярное течение. Методология синоптического мониторинга поверхностных термических фронтов Южного океана основана на попутных наблюдениях во время сезонных морских операций снабжения российских антарктических станций. Используются непрерывные наблюдения за изменчивостью горизонтальных градиентов температуры поверхностного слоя моря (ТПСМ) in situ и горизонтальных градиентов температуры поверхности моря (ТПМ) по спутниковым инфракрасным изображениям, принимаемым на судне в реальном времени. Вместе эти данные, получаемые во время регулярных меридиональных плаваний научно-экспедиционных судов Российской антарктической экспедиции между Африкой и Антарктидой, позволяют судить о наличии (или отсутствии) тенденций межгодовых изменений широтного местоположения основных фронтов Южного океана как свидетельств проявлений глобального потепления в поверхностном слое вод. В индоокеанском секторе Южного океана в период 2007–2016 гг. в межгодовых сезонных положениях основных климатических фронтов на поверхности моря отмечена тенденция к смещению на юг

    МНОГОПАРАМЕТРИЧЕСКАЯ ОЦЕНКА ДЕЯТЕЛЬНОСТИ ОПЕРАТОРОВ ИНТРОСКОПОВ

    Get PDF
    The main feature of activity of an operator of X-ray introscope is that it is carried out not with a real object, but with its information model. The authors propose a variant of a multiparameter evaluation of professional work of an operator- introscopist taking into account perception specificity of visual information from the monitor screen. This method facilitates the creation of certification programs, conducting tests of knowledge in the field of transport safety, as well as the choice of evaluation criteria and principles of simulation of training tools.Главная особенность деятельности оператора рентгенотелевизионного интроскопа состоит в том, что она осуществляется не с реальным объектом, а его информационной моделью. Авторами журнальной публикации предложен вариант многопараметрической оценки профессиональной операторской работы интроскописта с учетом специфики восприятия визуальной информации с экрана монитора. Этот метод облегчает создание аттестационных программ, проведение тестирования знаний в области транспортной безопасности, а также выбор оценочных критериев и принципов моделирования обучающих средств

    Cross-comparison of cloud liquid water path derived from observations by two space-borne and one ground-based instrument in northern Europe

    Get PDF
    Cloud liquid water path (LWP) is one of the target atmospheric parameters retrieved remotely from ground-based and space-borne platforms using different observation methods and processing algorithms. Validation of LWP retrievals is a complicated task since a cloud cover is characterised by strong temporal and spatial variability while remote sensing methods have different temporal and spatial resolutions. An attempt has been made to compare and analyse the collocated LWP data delivered by two satellite instruments SEVIRI and AVHRR together with the data derived from microwave observations by the ground-based radiometer RPG-HATPRO. The geographical region of interest is the vicinity of St. Petersburg, Russia, where the RPG-HATPRO radiometer is operating. The study is focused on two problems. The first one is the so-called scale difference problem, which originates from dissimilar spatial resolutions of measurements. The second problem refers to the land–sea LWP gradient. The radiometric site is located 2.5 km from the coastline where the effects of the LWP gradient are pronounced. A good agreement of data obtained at the microwave radiometer location by all three instruments (HATPRO, SEVIRI, and AVHRR) during warm and cold seasons is demonstrated (the largest correlation coefficient 0.93 was detected for HATPRO and AVHRR datasets). The analysis showed no bias of the SEVIRI results with respect to HATPRO data and a large positive bias (0.013–0.017 kg m−2) of the AVHRR results for both warm and cold seasons. The analysis of LWP maps plotted on the basis of the SEVIRI and AVHRR measurements over land and water surfaces in the vicinity of St. Petersburg revealed the unexpectedly high LWP values delivered by AVHRR during the cold season over the Neva River bay and over the Saimaa Lake and the abnormal land–sea LWP gradient in these areas. For the detailed evaluation of atmospheric state and ice cover in the considered geographical regions during the periods of ground-based and satellite measurements, reanalysis data were used. It is shown that the most probable reason for the observed artefacts in the AVHRR measurements over water and ice surfaces is the coarse resolution of the land–sea and snow–ice masks used by the AVHRR retrieval algorithm. The influence of a cloud field inhomogeneity on the agreement between the satellite and the ground-based data is studied. For this purpose, the simple estimate of the LWP temporal variability is used as a measure of the spatial inhomogeneity. It has been demonstrated that both instruments are equally sensitive to the inhomogeneity of a cloud field despite the fact that they have different spatial resolutions
    corecore