26 research outputs found

    OPV strains circulation in HIV infected infants after National Immunisation Days in Bangui, Central African Republic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Humans are the only host of polioviruses, thus the prospects of global polio eradication look reasonable. However, individuals with immunodeficiencies were shown to excrete vaccine derived poliovirus for long periods of time which led to reluctance to prolong the vaccination campaign for fear of this end result. Therefore, we aimed to assess the duration of excretion of poliovirus after the 2001 National Immunization Days according to Human immunodeficiency virus status.</p> <p>Findings</p> <p>Fifty three children were enrolled. Sequential stool samples were collected in between National Immunisation Days rounds and then every month during one year. Children were classified into 2 groups: no immunodepression (n = 38), immunodepression (n = 15) according to CD4+ lymphocytes cells count. Thirteen poliovirus strains were isolated from 11 children: 5 Human immunodeficiency virus positive and 6 Human immunodeficiency virus negative. None of the children excreted poliovirus for more than 4 weeks. The restriction fragment length polymorphism analysis showed that all strains were of Sabin origin including a unique Polio Sabine Vaccine types 2 and 3 (S2/S3) recombinant.</p> <p>Conclusions</p> <p>From these findings we assume that Human immunodeficiency virus positive children are not a high risk population for long term poliovirus excretion. More powerful studies are needed to confirm our findings.</p

    Circulation et dérive génétique du poliovirus en Afrique Centrale et de l'ouest

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Measles

    No full text
    International audienc

    Seroprevalence of measles and natural rubella antibodies among children in Bangui, Central African Republic

    No full text
    Abstract Background Passively acquired maternal antibodies are necessary to protect infants against circulating measles virus until they reach the eligible age of vaccination. Likewise, high levels of population immunity must be achieved and maintained to reduce measles virus transmission. This study was undertaken to (1) assess the presence of maternally acquired measles-specific IgG antibodies among infants less than 9 months of age in Bangui, Central African Republic and (2) determine the immune status of vaccination-age children and the concordance with reported vaccination status. A secondary objective was to describe the presence of rubella-specific IgG antibody in the study population. Methods Vaccination history and blood samples were collected from 395 children using blotting paper. Samples were analyzed for the presence of measles-specific IgG antibodies using commercial ELISA kits. Results Measles-specific IgG antibodies were detected in 51.3% of vaccinated children and 27.6% of non-vaccinated children. Maternally derived measles IgG antibodies were present in only 14.8% of infants aged 0-3 months and were absent in all infants aged 4-8 months. The presence of IgG-specific measles antibodies varied among children of vaccination age, from 57.3% for children aged 9 months to 5 years, to 50.6% for children aged 6-9 years and 45.6% for chidren aged 10 years and above. The overall prevalence of rubella-specific IgG was 55.4%, with a high prevalence (87.4%) among children over 10 years of age. Conclusion The findings suggest that despite efforts to accelerate measles control by giving a second dose of measles vaccine, a large number of children remain susceptible to measles virus. Further research is required to determine the geographic extent of immunity gaps and the factors that influence immunity to measles virus in the Central African Republic.</p

    Characterization of the genome of human enteroviruses: design of generic primers for amplification and sequencing of different regions of the viral genome.

    No full text
    International audienceHuman enteroviruses are among the most common viruses infecting humans and can cause diverse clinical syndromes ranging from minor febrile illness to severe and potentially fatal diseases. Biodiversity and evolution of human enterovirus genomes are shaped by frequent recombination events. Therefore, identification and characterization of circulating strains of enteroviruses require partial determination of different genomic regions. The development is described of a simple method allowing amplification and partial sequencing of the P1, P2 and P3 genomic regions of field human enterovirus strains isolated in cell cultures, by performing PCR on cDNAs generated through a single RT reaction. A set of generic primers were designed and tested on a panel of 90 field and prototype viruses belonging to the five species of human enteroviruses. This assay was shown to amplify efficiently the targeted regions of all the 90 genomes tested. The generated amplicons were sequenced successfully without the need for gel purification. This assay could be a valuable tool for laboratories interested in molecular epidemiology and evolution studies implicating a great number of human enterovirus strains isolated from human or environmental samples

    Vaccine-Derived Polioviruses, Central African Republic, 2019

    No full text
    International audienceSince May 2019, the Central African Republic has experienced a poliomyelitis outbreak caused by type 2 vaccine-derived polioviruses (VDPV-2s). The outbreak affected Bangui, the capital city, and 10 districts across the country. The outbreak resulted from several independent emergence events of VDPV-2s featuring recombinant genomes with complex mosaic genomes. The low number of mutations (<20) in the viral capsid protein 1-encoding region compared with the vaccine strain suggests that VDPV-2 had been circulating for a relatively short time (probably <3 years) before being isolated. Environmental surveillance, which relies on a limited number of sampling sites in the Central African Republic and does not cover the whole country, failed to detect the circulation of VDPV-2s before some had induced poliomyelitis in children

    Animal enteroviruses: a glimpse of a wide evolutionary landscape

    No full text
    International audienceThe genus Enterovirus (family Picornaviridae) contains numerous viruses, most of which have been identified in humans. Among them, the three serotypes of poliovirus, coxsackieviruses A and B, echoviruses, rhinoviruses and other enteroviruses (EVs) responsible in humans for a wide spectrum of clinical manifestations. There are also 60 identified EVs in different mammals. Some have been found in both humans and animals, demonstrating the possibility of zoonotic transmission of certain EVs.Compared to human EVs, genetic and epidemiological data about animal EVs are scarce. However, the detection of EVs in various species of mammals and their presence on all continents suggest that the number of EVs still to be discovered is very important. Some EVs found in animals have characteristics never seen in human EVs. Furthermore, the unique phylogenetic relationships observed between some animal EVs raise interesting questions about the rules that govern the evolution of these viruses. The aim of this review is to present the salient data on animal EVs and to highlight the questions they raise
    corecore