15 research outputs found

    Valorization of chestnut shells for hydrogen production by Clostridium butyricum fermentation

    Get PDF
    Chestnut shell s (CS) is an agronomic waste generated from the peeling process of the chestnut fruit. It is well-known that the extract of CS contains high amounts of tannins, which are polyphenolic antioxidants1, but this agronomic residue also contains about 36% sugars in form of polysaccharides, and no utilization of chestnut shells as potential source of fermentable sugars has been considered so far. As consequence, this waste represents an interesting exploitable source for monosaccharides production, and in this study we evaluated the potential of biohydrogen production from CS hydrolyzate

    A novel β-xylosidase from Anoxybacillus sp. 3M towards an improved agro-industrial residues saccharification

    Get PDF
    ABSTRACT: An intracellular β-xylosidase (AbXyl), fromthe thermoalkaline Anoxybacillus sp. 3M,was purified and characterized. The homodimeric enzyme (140 kDa) was optimally active at 65 °C and pH 5.5, exhibited half life of 10 h at 60 °C, 78 and 88% residual activity after 24 h, at pH 4.5 and 8.0, respectively. Fe2+, Cu2+, Al3+, Ag+ and Hg2+inhibited the enzyme; the activity was moderately stimulated by SDS and not influenced by β-mercaptoethanol. In the presence of p-nitrophenyl-β-D-xylopyranoside, AbXyl exhibited Km of 0.19 mM, Kcat of 453.29 s−1, KcatKm−1 of 2322 s−1mMandwas moderately influenced by xylose (Ki 21.25mM). The enzyme hydrolyzed xylo-oligomers into xylose and catalyzed transxylosilation reactions also in presence of alcohols as acceptors, producing xylo-oligosaccharides and alkyl-xylosides. Finally AbXyl was applied towards a statistically optimized process of brewery's spent grain bioconversion, highlighting the important role of this biocatalyst in reaching high yields of fermentable sugars.info:eu-repo/semantics/publishedVersio

    Anaerobic digestion process for biogas and biomolecules production: microflora identification and characterization

    Get PDF
    The anaerobic process was efficient in organic matter removal. During the process, an interesting compound as quercetin was produced inside of reactor. Phylogenetic analysis showed the presence of phylotypes affiliated with gamma-Proteobacteria, Choroflexi, and Bacteroidetes. Archaea were represented by phylotypes belonging to the genus Methanosarcina and Methanosaeta

    Properties of an alkali-thermo stable xylanase from Geobacillus thermodenitrificans A333 and applicability in xylooligosaccharides generation

    Get PDF
    An extracellular thermo-alkali-stable and cellulase-free xylanase from Geobacillus thermodenitrificans A333 was purified to homogeneity by ion exchange and size exclusion chromatography. Its molecular mass was 44 kDa as estimated in native and denaturing conditions by gel filtration and SDS-PAGE analysis, respectively. The xylanase (GtXyn) exhibited maximum activity at 70 °C and pH 7.5. It was stable over broad ranges of temperature and pH retaining 88 % of activity at 60 °C and up to 97 % in the pH range 7.5–10.0 after 24 h. Moreover, the enzyme was active up to 3.0 M sodium chloride concentration, exhibiting at that value 70 % residual activity after 1 h. The presence of other metal ions did not affect the activity with the sole exceptions of K+ that showed a stimulating effect, and Fe2+, Co2+ and Hg2+, which inhibited the enzyme. The xylanase was activated by non-ionic surfactants and was stable in organic solvents remaining fully active over 24 h of incubation in 40 % ethanol at 25 °C. Furthermore, the enzyme was resistant to most of the neutral and alkaline proteases tested. The enzyme was active only on xylan, showing no marked preference towards xylans from different origins. The hydrolysis of beechwood xylan and agriculture-based biomass materials yielded xylooligosaccharides with a polymerization degree ranging from 2 to 6 units and xylobiose and xylotriose as main products. These properties indicate G. thermodenitrificans A333 xylanase as a promising candidate for several biotechnological applications, such as xylooligosaccharides preparation

    Vegetable wastes to phenolic compounds by anaerobic digestion [Poster]

    No full text
    The present work intends to assess whether anaerobic digestion could be additionally used as a valorisation method of fresh-cut fruit and vegetables by-products, producing different valuable molecules for industrial applications
    corecore