

New Horizons on Campus ICT Infrastructure

Oktay ÖZGÜN Software & Services Group INTEL

oktay.ozgun@intel.com

Objectives of this Session

Observations on University IT Infrastructures

BKMs from Enterprise IT & Telco

Recommendations

Intel Software Group

About me...

- Working in IT & Telecom industry for 12 years
- A PhD candidate working on his thesis
- A frequent university campus visitor

An Outlook

- Digital Campus installations started early 90's
- Science and technology information systems installed first
- Student affairs/HR automation, student labs, Web portals and user applications
- Campus backbones and integration
- Mobility support
- e-Learning environments
- HPC clusters/Grid

University IT Infrastructure Grouping

- Server farm
- Office Automation and Desktop applications
- Campus network
- Web portal and User applications
- Main IT room / control centre
- Wireless communications
- Campus backbone & cabling
- IT security
- Telephony and Unified messaging system (UMS)
- Public facilities Kiosks and Displays
- Digital Surveillance

Differences from Enterprise IT Systems

	Campus	Company
Ultimate goal	To create knowledge value	To create economical value(profits)
Focus of information	Knowledge	Capital, Material flow
Key resource bank	Educational resource bank	Client and product resource bank
Typical systems	E-learning,E- campus	ERP/MRP/CRM
Main source of alteration	Teaching patterns	Marketing/product ion patterns
Relevant IT theories	Few	ERP/BPM/ValueC hain, etc.
Time relativity	Each semester as a cycle; system load varying periodically.	Relatively stable

Differences from Enterprise IT Systems IT Departments

	Campus	Company
Service recipients	Teachers and students.	Employees
Capital investment	More attention to network construction, less to the application system construction.	More attention to the application system construction
Time relativity	Each semester as a cycle; work pressure and personnel alteration varying periodically.	Relatively stable
Cultural atmosphere	Campus culture characterized by freedom and open- mindedness	Company culture characterized by discipline and efficiency

Differences from Enterprise IT Systems Organizational Characteristics

	•	
	Campus	Company
Relation between departments	Relatively independent; loosely- connected	Closely connected
Number of personnel	Usually a lot, some with an enrollment of 60,000 students[7]	From very few to a great many
Knowledge structure	Many experts at computer in different departments	Few experts at computer in other departments
Personnel mobility	Noticeable periodical mobility (such as freshmen coming to and graduates leaving the school)	No noticeable periodical mobility

University ICT Systems & Processes Reality

- Incompatible systems with weak levels of integration
- Fragmented data
- Fragmented processes and systems ownership
- Lacking in functionality

- Weak customer service
- Slow new service introduction
- High man-power costs Processes

What we need?

• A framework for delivering highly flexible, low cost operations for:

-Processes

-Data architecture and information models

-Integration architecture

ITIL Framework

Planning to implementService Management Service Management The The ICT Infrastructure Technology Service Support The Business Management Business Perspective Service Delivery Security Management **Organizational Model Application Management** IT Construction Leading Group IT Expert Committee **ITIL Framework** Other IT Department Departments General Architect Group Step 1 Step 2 Step 3 Next Cycle System System Development Service Support Administration Administrator Department Department Top level Design Application Management Department Strategy University Strategy University Strategy Informationization Service Network Strategy Project Service Delivery Desk Service Support Service Mangement Administrator Manager Application User Administrator **Process Model** Training Programmer Security Problem Administrator Management System Configuration Analyst Management Administrator Test Database Administrator

Technology Model - 1

Towards Tighter Integration

Campus Application Integration Framework based on SOA

Technology Model - 2

Georgia State Univ. Info. Model

An Ideal Information Model & Data Architecture

Additional Recommendations

- Use COTS
- Build server farms as internal clouds
- Manageable clients
- Support Mobility
 - Structured, manageable WiFi (802.16n) networks
 - Power plugs for mobile users
 - Seamless secure "outside campus" services
- Social collaboration services
- Empower users to develop new content/services/ applications (i.e. internal marketplaces)

e-Science

- Data sharing and integration
 - Life sciences, sharing standard data-sets, combining collaborative data-sets
 - Medical informatics, integrating hospital information systems for better care and better science
 - Sciences, high-energy physics

Simulation-based science and engineering

Earthquake simulation

Capability computing

- Life sciences, molecular modeling, tomography
- Engineering, materials science
- Sciences, astronomy, physics
- High-throughput, capacity computing for
 - Life sciences: BLAST, CHARMM, drug screening
 - Engineering: aircraft design, materials, biomedical
 - Sciences: high-energy physics, economic modeling

Source: Hiro Kishimoto GGF17 Keynote May 2006

e-Science Recommendations

• University Cluster

• Deskside Clusters for research groups

 Grid Infrastructure collaborating with other universities

 Internet-2 like network

Towards "Digital Campus" – A Dream University

A multipurpose Digital Campus facilitating for a better e-Learning environment by Kansai University

Unified spaces of both virtual and real
 Visualisation of resources via Web3D

- Metamodel to utilize resources over the Internet
 - Contents retrieval and integration from multiple resources, data storage according to location information, and its utilization
- Campus amenity and educational contents among individuals
 - Avatar appearance, objects and links allocation

Intel® Software

Intel® Software Partner Program

Planning & Strategy

Developme nt Marketing & Sales

www.intel.com/partner

Intel® ATOM[™] Developer Program

http://appdeveloper.intel.com

MeeGo

Login | Register

Home Downloads Developers Projects Garage Community About

MeeGo blog Latest news from the team

What's new Interesting bits about MeeGo

Intel Software Curriculum Adaptation Programs*

Multicore Programming – Intel Software Tools – Modular Course Content

http://software.intel.com/en-us/academic

* Embedded Development is on the way

Thank You!

