1,389 research outputs found

    The B_{s0} meson and the B_{s0}B K coupling from QCD sum rules

    Full text link
    We evaluate the mass of the Bs0B_{s0} scalar meson and the coupling constant in the Bs0BKB_{s0} B K vertex in the framework of QCD sum rules. We consider the Bs0B_{s0} as a tetraquark state to evaluate its mass. We get m_{B_s0}=(6.04\pm 0.08) \GeV, which is bigger than predictions supposing it as a bsˉb\bar{s} state or a BKˉB\bar{K} bound state with JP=0+J^{P}=0^+. To evaluate the gBs0BKg_{B_{s0}B K} coupling we use the three point correlation functions of the vertex, considering Bs0 B_{s0} as a normal bsˉb\bar{s} state. The obtained coupling constant is: g_{B_{s0} B K} =(16.3 \pm 3.2) \GeV. This number is in agreement with light-cone QCD sum rules calculation. We have also compared the decay width of the \BS\to BK process considering the \BS to be a bsˉb\bar{s} state and a BKBK molecular state. The width obtained for the BKBK molecular state is twice as big as the width obtained for the bsˉb\bar{s} state. Therefore, we conclude that with the knowledge of the mass and the decay width of the \BS meson, one can discriminate between the different theoretical proposals for its structure.Comment: revised version to appear in Phys. Rev.

    Deconfinement Through Chiral Transition In 2 Flavour QCD

    Get PDF
    We propose that in QCD with dynamical quarks, colour deconfinement occurs when an external field induced by the chiral condensate strongly aligns the Polyakov loop. This effect sets in at the chiral symmetry restoration temperature TχT_{\chi} and thus makes deconfinement and chiral symmetry restoration coincide. The predicted singular behavior of Polyakov loop susceptibilities at TχT_{\chi} is shown to be supported by finite temperature lattice calculations.Comment: Talk given at Lattice 2000 (Finite Temperature), 4 pages, 6 EPS-figure

    Frustration and glassiness in spin models with cavity-mediated interactions

    Full text link
    We show that the effective spin-spin interaction between three-level atoms confined in a multimode optical cavity is long-ranged and sign-changing, like the RKKY interaction; therefore, ensembles of such atoms subject to frozen-in positional randomness can realize spin systems having disordered and frustrated interactions. We argue that, whenever the atoms couple to sufficiently many cavity modes, the cavity-mediated interactions give rise to a spin glass. In addition, we show that the quantum dynamics of cavity-confined spin systems is that of a Bose-Hubbard model with strongly disordered hopping but no on-site disorder; this model exhibits a random-singlet glass phase, absent in conventional optical-lattice realizations. We briefly discuss experimental signatures of the realizable phases.Comment: 5 pages, 2 figure

    Topologically decoherence-protected qubits with trapped ions

    Full text link
    We show that trapped ions can be used to simulate a highly symmetrical Hamiltonian with eingenstates naturally protected against local sources of decoherence. This Hamiltonian involves long range coupling between particles and provides a more efficient protection than nearest neighbor models discussed in previous works. Our results open the perspective of experimentally realizing in controlled atomic systems, complex entangled states with decoherence times up to nine orders of magnitude longer than isolated quantum systems.Comment: 4 page

    QCD sum rule approach for the light scalar mesons as four-quark states

    Full text link
    We study the two point-function for the scalar mesons σ,κ,f0(980)\sigma, \kappa, f_0(980) and a0(980)a_0(980) as diquak-antidiquark states. We also study the decays of these mesons into ππ\pi\pi, KπK\pi and KKˉK\bar{K}. We found that the couplings are consistent with existing experimental data, pointing in favor of the four-quark structure for the light scalar mesons.Comment: 6 pages, 4 figure

    On the Spin Gap Phase of Strongly-Correlated Electrons

    Full text link
    We discuss the possible existence of a spin-gap phase in the low-doping regime of strongly-correlated two-dimensional electrons within the gauge field description of the t-J model. The spin-gap phase was recently shown by Ubbens and Lee to be destroyed by gauge field quantum fluctuations for a single-layer 2D system in the absence of disorder and for a full gap. We show that the same conclusion applies both in the dirty limit and for the case of a gapless spinon condensate.Comment: 7 pages, uuencoded Postscript, including 1 figur

    Drift of a polymer chain in disordered media

    Full text link
    We consider the drift of a polymer chain in a disordered medium, which is caused by a constant force applied to the one end of the polymer, under neglecting the thermal fluctuations. In the lowest order of the perturbation theory we have computed the transversal fluctuations of the centre of mass of the polymer, the transversal and the longitudinal size of the polymer, and the average velocity of the polymer. The corrections to the quantities under consideration, which are due to the interplay between the motion and the quenched forces, are controlled by the driving force and the degree of polymerization. The transversal fluctuations of the Brownian particle and of the centre of mass of the polymer are obtained to be diffusive. The transversal fluctuations studied in the present Letter may also be of relevance for the related problem of the drift of a directed polymer in disordered media and its applications.Comment: 11 pages, RevTex, Accepted for publication in Europhysics Letter

    Resonant CP Violation in Higgs Radiation at e^+e^- Linear Collider

    Full text link
    We study resonant CP violation in the Higgsstrahlung process e^+e^- -> H_{1,2,3} (Z -> e^+e^-, \mu^+\mu^-) and subsequent decays H_{1,2,3} -> b \bar{b}, \tau^-\tau^+, in the MSSM with Higgs-sector CP violation induced by radiative corrections. At a high-energy e^+e^- linear collider, the recoil-mass method enables one to determine the invariant mass of a fermion pair produced by Higgs decays with a precision as good as 1 GeV. Assuming an integrated luminosity of 100/fb, we show that the production lineshape of a coupled system of neutral Higgs bosons decaying into b\bar{b} quarks is sensitive to the CP-violating parameters. When the Higgs bosons decay into \tau^-\tau^+, two CP asymmetries can be defined using the longitudinal and transverse polarizations of the tau leptons. Taking into account the constraints from electric dipole moments, we find that these CP asymmetries can be as large as 80 %, in a tri-mixing scenario where all three neutral Higgs states of the MSSM are nearly degenerate and mix significantly.Comment: 22 pages, 8 figures, to appear in Phys. Rev.

    Axial anomaly: the modern status

    Full text link
    The modern status of the problem of axial anomaly in QED and QCD is reviewed. Two methods of the derivation of the axial anomaly are presented: 1) by splitting of coordinates in the expression for the axial current and 2) by calculation of triangle diagrams, where the anomaly arises from the surface terms in momentum space. It is demonstrated, that the equivalent formulation of the anomaly can be given, as a sum rule for the structure function in dispersion representation of three point function of AVV interaction. It is argued, that such integral representation of the anomaly has some advantages in the case of description of the anomaly by contribution of hadronic states in QCD. The validity of the t'Hooft consistency condition is discussed. Few examples of the physical application of the axial anomaly are given.Comment: 17 pages, 3 figures, to be published in International Journal of Modern Physics A, few minor correction were done, two references were adde

    Analysis of Ωb−(bss)\Omega_b^-(bss) and Ωc0(css)\Omega_c^0(css) with QCD sum rules

    Full text link
    In this article, we calculate the masses and the pole residues of the 1/2+{1/2}^+ heavy baryons Ωc0(css)\Omega_c^0(css) and Ωb−(bss)\Omega_b^-(bss) with the QCD sum rules. The numerical values MΩc0=(2.72±0.18)GeVM_{\Omega_c^0}=(2.72\pm0.18) \rm{GeV} (or MΩc0=(2.71±0.18)GeVM_{\Omega_c^0}=(2.71\pm0.18) \rm{GeV}) and MΩb−=(6.13±0.12)GeVM_{\Omega_b^-}=(6.13\pm0.12) \rm{GeV} (or MΩb−=(6.18±0.13)GeVM_{\Omega_b^-}=(6.18\pm0.13) \rm{GeV}) are in good agreement with the experimental data.Comment: 18 pages, 18 figures, slight revisio
    • …
    corecore