5 research outputs found

    Brown Adipose Tissue is Linked to a Distinct Thermoregulatory Response to Mild Cold in People

    Get PDF
    Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its role in temperature homeostasis in people is less studied. To this end, we recruited 18 men [8 individuals with no/minimal BAT activity (BAT-) and 10 with pronounced BAT activity (BAT+)]. Each volunteer participated in a 6 h, individualized, non-shivering cold exposure protocol. BAT was quantified using positron emission tomography/computed tomography. Body core and skin temperatures were measured using a telemetric pill and wireless thermistors, respectively. Core body temperature decreased during cold exposure in the BAT- group only (-0.34oC, 95% CI: -0.6 to -0.1, p = 0.03), while the cold-induced change in core temperature was significantly different between BAT+ and BAT- individuals (BAT+ vs. BAT-, 0.43oC, 95% CI: 0.20 to 0.65, p = 0.0014). BAT volume was associated with the cold-induced change in core temperature (p = 0.01) even after adjustment for age and adiposity. Compared to the BAT- group, BAT+ individuals tolerated a lower ambient temperature (BAT-: 20.6± 0.3oC vs. BAT+: 19.8 ± 0.3oC, p=0.035) without shivering. The cold-induced change in core temperature (r = 0.79, p = 0.001) and supraclavicular temperature (r = 0.58, p = 0.014) correlated with BAT volume, suggesting that these non-invasive measures can be potentially used as surrogate markers of BAT when other methods to detect BAT are not available or their use is not warranted. These results demonstrate a physiologically significant role for BAT in thermoregulation in people. This trial has been registered with Clinaltrials.gov: NCT01791114 https://clinicaltrials.gov/ct2/show/NCT01791114

    Suppression of DNA/RNA and protein oxidation by dietary supplement which contains plant extracts and vitamins: a randomized, double-blind, placebo-controlled trial

    No full text
    Abstract Background Excessive oxidative stress may impair bio-molecules and cellular function. Multi antioxidant supplementation is thought to be more effective than a single antioxidant probably through the synergistic or complementary action of natural substances that could enhance the prospective effect. Methods In order to estimate the effect of a plant extract based supplement in apparently healthy volunteers’ oxidative stress markers, a double-blind and placebo controlled intervention was performed. 62 apparently healthy volunteers, overweight with medium adherence to the Mediterranean diet, were recruited and randomly allocated into two intervention groups (supplement or placebo) for 8 weeks. Basic biochemical markers, oxidized LDL (oxLDL), resistance of serum in oxidation, protein carbonyls in serum and 8-isoprostane and DNA/RNA damage in urine were measured. Results No differentiation was observed in basic biochemical markers, in oxLDL levels as well as in serum resistance against oxidation, during intervention in the examined groups. A significant resistance regarding urine isoprostanes levels in the supplement group compared to the placebo one, was observed. Reduction on DNA/RNA damage and on protein carbonyls levels (almost 30% and 20% respectively, at 8 weeks) was detected in volunteers who consumed the supplement compared to the control group. Conclusion Consumption of plant extract based supplement seems to reduce DNA/RNA and protein oxidation and in less extent lipids peroxidation. Trial registration ClinicalTrials.gov Identifier for this study is: NCT02837107
    corecore