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Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its

role in temperature homeostasis in people is less studied. To this end, we recruited

18 men [8 subjects with no/minimal BAT activity (BAT−) and 10 with pronounced BAT

activity (BAT+)]. Each volunteer participated in a 6 h, individualized, non-shivering cold

exposure protocol. BAT was quantified using positron emission tomography/computed

tomography. Body core and skin temperatures were measured using a telemetric pill

and wireless thermistors, respectively. Core body temperature decreased during cold

exposure in the BAT− group only (−0.34◦C, 95% CI: −0.6 to −0.1, p = 0.03), while the

cold-induced change in core temperature was significantly different between BAT+ and

BAT− subjects (BAT+ vs. BAT−, 0.43◦C, 95% CI: 0.20–0.65, p = 0.0014). BAT volume

was associated with the cold-induced change in core temperature (p = 0.01) even

after adjustment for age and adiposity. Compared to the BAT− group, BAT+ subjects

tolerated a lower ambient temperature (BAT−: 20.6 ± 0.3◦C vs. BAT+: 19.8 ± 0.3◦C,

p = 0.035) without shivering. The cold-induced change in core temperature (r = 0.79,

p = 0.001) and supraclavicular temperature (r = 0.58, p = 0.014) correlated with

BAT volume, suggesting that these non-invasive measures can be potentially used as

surrogate markers of BAT when other methods to detect BAT are not available or their

use is not warranted. These results demonstrate a physiologically significant role for

BAT in thermoregulation in people. This trial has been registered with Clinaltrials.gov:

NCT01791114 (https://clinicaltrials.gov/ct2/show/NCT01791114).
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INTRODUCTION

Thermoregulation is a vital homeostatic mechanismmaintaining
the core body temperature within a relatively narrow range
in the face of large fluctuations in ambient temperature
(Mekjavic and Eiken, 2006). Deviation from this normal
range may indicate the presence of a pathological condition
and can be lethal in extreme cases. Brown adipose tissue
(BAT) has been shown to be the primary thermoregulatory
tissue during non-shivering cold exposure (CE) in mammals
(Cannon and Nedergaard, 2004). Its thermogenic properties
are attributable to its numerous mitochondria, which contain
high amounts of the uncoupling protein 1 (UCP1, also known
as thermogenin) (Nedergaard et al., 2001). UCP1 uncouples
oxidative phosphorylation, resulting in heat production
(thermogenesis).

BAT has only recently been identified in adults (Nedergaard
et al., 2007; Cypess et al., 2009; van Marken Lichtenbelt et al.,
2009; Virtanen et al., 2009) and thus its thermoregulatory
role in people remains unclear. Historically, BAT has been
proposed to play a role in thermoregulation in infants, who
have copious amounts of BAT (Ito and Kuroshima, 1967),
apparently because they lack the ability to shiver (Silverman
et al., 1964; Dawkins and Scopes, 1965). Acute CE (2–6 h)
activates BAT (van Marken Lichtenbelt et al., 2009; Virtanen
et al., 2009; Ouellet et al., 2012; Chondronikola et al., 2014),
while chronic CE (10 days to 6 weeks) can further increase
the detectable BAT activity in lean, obese, and patients with
type 2 diabetes (Yoneshiro et al., 2013; van der Lans et al.,
2013; Blondin et al., 2014; Lee et al., 2014; Hanssen et al.,
2015a,b). Consistent with results of the classic study by Davis
(1961) more than 50 years earlier, it has been recently reported
that chronic CE not only increases BAT activity, but also
increases thermal comfort and trunk skin temperature (van
der Lans et al., 2013; Hanssen et al., 2015a,b). However, the
magnitude of change in the previously mentioned responses was
not correlated with BAT. Blondin et al. (2014) also reported
an increase in BAT activity after 4-week cold acclimation,
but no difference in the thermal responses of subjects
before and after acclimation. Therefore, the physiological
significance of BAT in human thermoregulation remains
unclear.

Considering the lack of evidence on the thermoregulatory
role of human BAT, we conducted a study to determine if
there is a physiologically significant role of BAT in temperature
homeostasis in people. We studied 18 men with significant
BAT activity (BAT+; n = 10) or without/minimal BAT activity
(BAT−; n = 8), using an individualized, 6 h, non-shivering CE
protocol. We found that the presence of BAT is associated with
higher tolerance to cold, supported by the findings of higher
core body temperature during CE noted in subjects with high
amounts of BAT, while the BAT+ group was able to tolerate
a lower ambient temperature without shivering. These results
support a physiologically significant role for human BAT in
thermoregulation.

MATERIALS AND METHODS

Participants
Twenty men enrolled in this study. Only healthy subjects
qualified to participate. Informed written consent was obtained
from all participants in accordance with the Declaration of
Helsinki; the University of Texas Medical Branch Institutional
Review Board and the Institute for Translational Sciences
(ITS) Scientific Review Committee approved the study
protocol. From the subjects enrolled in the study, one
participant dropped out, while body temperature data were
not recorded for one participant due to equipment failure.
Results from 18 participants were analyzed (Figure 1). This
trial has been registered with Clinaltrials.gov: NCT01791114
https://clinicaltrials.gov/ct2/show/NCT01791114).

Experimental Protocol
Three days prior to the study, participants were asked to follow
their regular weight-maintaining diet and to refrain from any
excessive physical activity, alcohol, and caffeine consumption.
The evening before the study, the subjects were admitted to
the ITS Clinical Research Center and offered a standardized
meal. Subjects fasted and rested in bed overnight, wearing
standardized clothing (a T-shirt and a pair of shorts), and
covered with a blanket. The temperature of the room was
23–24◦C.

The following morning a 6 h, individualized, CE protocol was
employed to maximally induce non-shivering thermogenesis. In
addition to the standardized clothing, subjects wore garments
cooled by liquid circulation (Cool Flow R© vest and blanket and
Arctic Chiller cooling system, Polar Products Inc., Stow, OH)
and laid supine. The temperatures of the cooling garments and
the room were initially set at approximately 19–20◦C and were
decreased by 1◦C approximately every 30min until subjects
reported shivering. Then, the cooling garment and ambient
temperatures were increased by 1◦C and adjusted as needed to
prevent shivering. Additionally, we visually inspected the subjects
for shivering.

Temperature Measurements and Thermal
Sensation
Wireless probes (iButtons, Maxim, Dallas, TX) were used to
measure the skin temperature of the participants, the room,
and the water circulating through the cooling garments. The
probes were placed using adhesive tape in 14 locations of
the body (forehead, neck, right scapula, left upper chest, right
arm in the upper location, left arm in the lower location,
left hand, right abdomen, left paravertebral area, right anterior
thigh, left posterior thigh, right shin, left calf, and right instep)
according to a standard protocol (ISO9886, 2004). The average
skin temperature was calculated as the average of those 14 probes
(ISO9886, 2004). One additional probe was placed on the skin
area over the left supraclavicular adipose tissue depot (where BAT
is usually localized). Temperature recording using the wireless
thermistors failed in two participants.

Frontiers in Physiology | www.frontiersin.org 2 April 2016 | Volume 7 | Article 129

https://clinicaltrials.gov/ct2/show/NCT01791114
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Chondronikola et al. BAT and Thermoregulation

FIGURE 1 | CONSORT diagram of the study.

The trunk temperature was calculated as the average of the
skin temperatures recorded by the probes placed in the right
scapula, the paravertebral area, the abdomen, and the chest,
while the distal temperature was calculated as the average skin
temperatures of the probes placed on the instep and hand (Wijers
et al., 2011). The temperature gradient between the foot and the
ambient temperature was used as an index of vasoconstriction
and skin perfusion (Ruiz et al., 1979). Thermal sensation was
assessed using a visual analog scale of the American Society of
Heating, Refrigerating, and Air-Conditioning Engineers (de Dear
et al., 1998; de Deara and Brager, 2002). Core temperatures were
measured using a telemetric pill (Core-Temp, HQ Inc., Palmeto,
FL) that was ingested by 14 participants (6 BAT− and 8 BAT+).

Positron Emission
Tomography/Computerized Tomography
(PET/CT)
After 5 h of CE, subjects were given a bolus injection of 185
MBq of 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG). One hour
later, a PET/CT (General Electric Medical Systems, Milwaukee,
WI) scan was performed to assess BAT volume (ml) and mean
standardized uptake value (SUV; g/ml). We assessed the PET/CT
scans for 18F-FDG BAT using the following criteria: (a) 18F-FDG
uptake was evident in the cervical/supraclavicular, mediastinal,
paravertebral, and/or perirenal areas; (b) 18F-FDG uptake had
a mean SUV of 1.5 or greater (an indicator of 18F-FDG uptake
intensity); and (c) the tissue corresponded to the density of
adipose tissue on CT (−190 to −30 Hounsfield units). The
mean SUVs for each identified deposit were determined using
commercial fusion software (MIM software; MIMvista Corp.,
Cleveland, OH). The volume of 18F-FDG BAT was quantified by
autocontouring each identified individual BAT deposit (with a
SUV ≥ 1.5).

TABLE 1 | Subject characteristics.

Parameters All (n = 18) BAT− (n = 8) BAT+ (n = 10)

Age (y) 46.9±18.1 57.5±16.2 38.4±15.3*

BMI (kg/m2) 29.5±4.6 31.0±3.2 28.2±5.4

BSA (m2) 2.05±0.15 2.05±0.12 2.05±0.19

Lean Body Mass (kg) 61.0±8.0 59.6±5.6 62.2±9.7

Body Fat (%) 31.7±9.3 36.0±3.4 28.2±11.1

BAT volume (ml) 38.7±44.2 3.7±4.7 66.9±41.3***

BAT mean SUV (g/ml) 1.75±0.91 1.03±0.73 2.34±0.57***

Data are mean standard deviations. *p = 0.02 ***p = 0.001 by Student’s t-test between

BAT+ and BAT− subjects. BMI, body mass index; BAT, brown adipose tissue; BAT+,

detectable BAT; BAT−, no detectable BAT; BSA: SUV, standard uptake value.

Body Composition
We used Dual X-Ray Absorptiometry to evaluate the lean body
mass and total body fat mass of the participants (Hologic model
QDR-4500W, Hologic Inc., Bedford, MA).

Statistical Analysis
All results are presented as means ± standard deviations.
BAT+ and BAT− subjects were compared using Student’s
t-test (for normally distributed data) or the Mann Whitney
test (for not normally distributed data). The one sample
t-test was used to compare if the cold-induced change in
body core and supraclavicular temperatures was different
from 0 in BAT+ and BAT− participants. Paired t-test (for
normally distributed data) or Wilcoxon singed-rank test (for not
normally distributed data) were used to compare CE and TN
conditions. The Pearson’s r was used to evaluate the correlation
between BAT or muscle activity with body temperatures. A
multiple linear regression modeled the relation between each
outcome and BAT volume, while adjusting for the potentially
prognostic covariates age and percent fat. BAT volume was log
(base 10) transformed for better centering and interpretation.
Statistical analyses were performed using Graph Pad version
5 for Mac OS X (Graph Pad Software, Inc. La Jolla, CA)
and SPSS Version 20 for Mac statistical software (IBM Inc.,
Armonk, NY). All statistical tests assumed a 95% level of
confidence.

RESULTS

Subject Characteristics
The study sample consisted of 18 men (Table 1). Participants
were divided into two groups: 10 subjects with significant
BAT activity (BAT+) and 8 subjects with no/minimal BAT
activity (BAT−). The two groups were significantly different,
by design, in BAT volume [63.1ml, 95% confidence interval
(CI): 31.8–94.4, p = 0.001] and activity (1.3 g/ml, 95% CI:
0.7–2.0, p = 0.001). Moreover, the participants in the BAT−
group were older (19.1 years, 95% CI: 3–35, p = 0.02)
and tended to have higher body fat content (7.8%, 95%
CI: −0.9 to 16.5, p = 0.08) compared to the BAT+
group.
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FIGURE 2 | Brown adipose tissue (BAT), cold exposure (CE) tolerance, and thermal sensation. (A) Mean standardized uptake value (SUV) for glucose in

various tissues at 6 h of CE. SQAT, subcutaneous adipose tissue; VAT, visceral adipose tissue. (B) Thermal sensation in subjects with detectable BAT (BAT+) and

without detectable BAT (BAT−) at 5 h of CE. (C) Cooling garments temperature in BAT+ and BAT− subjects at 5 h of CE. (D) Ambient room temperature in BAT+ and

BAT− subjects at 5 h of CE. The data are means and standard deviations. *p = 0.035 using Mann–Whitney test and ***p = 0.001 using paired t-test.

Effect of BAT Activation on Tolerance to CE
and Thermal Sensation
The study participants followed an individualized CE protocol
to maximally induce non-shivering thermogenesis (i.e., ambient
and garment water temperatures were adjusted to the lowest
level tolerated by each subject without shivering). As expected,
the results of the 18F-FDG-PET/CT analyses support that
the BAT+ group demonstrated higher BAT metabolic activity
compared to BAT− subjects. No significant differences were
observed in the other tissues between BAT+ and BAT− subjects
(Figure 2A).

BAT+ and BAT− subjects reported comparable levels of
thermal sensation during CE (Figure 2B). Subjectively, both
groups reported “feeling cool” during the study. According
to the study protocol, the temperature of the room, and the
cooling garments was titrated to the lower tolerable level without
shivering. The temperature of the water circulating in the
cooling garments was also similar in the two groups (Figure 2C).
However, the room temperature was slightly lower in the BAT+
group (BAT−: 20.6 ± 0.3◦C vs. BAT+: 19.8 ± 0.3◦C, p = 0.035,
Figure 2D). These findings suggest that the subjects in the BAT+
group had a higher tolerance to cold.

Effect of BAT Activation on Body Core
Temperature
Core body temperature decreased after 5 h of CE only in
the BAT− group (−0.34◦C, 95% CI: −0.6 to −0.1, p =

0.03) (Figure 3A). Interestingly, the cold-induced change in
core temperature was significantly different between BAT+ and
BAT− subjects (0.43◦C, 95% CI: 0.20–0.65, p = 0.0014), while
BAT volume significantly correlated with cold-induced change in
core temperature (r= 0.79, p= 0.001, Figure 3B). No correlation

TABLE 2 | Muscle metabolic activity and body temperatures.

Parameters

Change in core temperature (◦C) r = −0.324

p = 0.259

Change in supraclavicular skin temperature (◦C) r = −0.412

p = 0.101

Change in trunk temperature (◦C) r = 0.103

p = 0.685

The correlation coefficients were calculated using Pearson’s r.

was noted between muscle activity (measured as the mean
skeletal muscle SUV for glucose during CE in the m. pectoralis
major and m. vastus lateralis) and change in core temperature at
the 5 h of CE (Table 2) or any other time point (data not shown).

BAT activity has been inversely associated with age (Cypess
et al., 2009; Yoneshiro et al., 2011) and adiposity (Saito et al.,
2009; van Marken Lichtenbelt et al., 2009). To account for
potential confounding, we performed multiple linear regression
analysis adjusting for age and adiposity (Table 3). After
adjustment for age and adiposity, BAT volume was significantly
associated with higher body core temperature (p= 0.01) after 5 h
of CE. Collectively, these results suggest that cold-stimulated BAT
activity can be involved in core temperature regulation in people.

Effect of BAT Activation on Skin
Temperature
We further hypothesized that, should BAT have a
thermoregulatory role in people, the skin temperature of
the BAT+ subjects would have a different response to cold
than that of BAT− subjects, especially in areas adjacent to the
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FIGURE 3 | Brown adipose tissue (BAT) and body temperature. (A) Cold-induced change in core temperature in subjects with detectable BAT (BAT+) and

without detectable BAT (BAT−). **p = 0.0014 using Student’s t-test, *p = 0.03 using one sample t-test. (B) Correlation of BAT volume with the change in body core

temperature using Pearson’s r. (C) Cold-induced change in supraclavicular skin temperature in BAT+ and BAT− subjects. **p = 0.007 using by one sample t-test, *p

= 0.03 using Student’s t-test. (D) Correlation of BAT volume with the change in supraclavicular skin body temperature using Pearson’s r. The data are means and

standard deviations. The dashed lines represent 95% confidence intervals.

anatomical locations of BAT (i.e., supraclavicular, peri-renal,
mediastinal, and paravertebral areas). CE decreased the skin
temperature of the supraclavicular area in the BAT− group
only (−1.8◦C, 95% CI: −2.9 to −0.6, p = 0.007, Figure 3C),
while no significant change was noted in the BAT+ group. The
cold-induced change in the supraclavicular skin temperature
was significantly different between BAT+ and BAT− subjects
(−1.4◦C, 95% CI: −2.6 to −0.2, p = 0.03). The cold-induced
change in supraclavicular temperature (r = 0.58, p = 0.014)
correlated with BAT volume (Figure 3D). No correlation was
noted between muscle activity and the supraclavicular or trunk
skin temperature during the last hour of CE (Table 2). Finally,
BAT volume was significantly associated with supraclavicular (p
= 0.03) and marginally associated with trunk skin temperature
(p = 0.07) after adjustment for age and adiposity (Table 3).
These data further demonstrate a significant role for human BAT
in thermoregulation, where cold-induced BAT activation affects
skin temperature in areas adjacent to the anatomical localization
of BAT.

Body Temperatures as Non-invasive
Indices of BAT Activity
Since the available methods to estimate BAT volume [e.g.,
PET/CT, magnetic resonance imaging (MRI), or infrared
thermography] involve exposure to radiation and/or are costly
and labor-intensive, we propose that changes in body core and
skin temperatures during CE can be potentially used as surrogate
markers of BAT activity. To further validate those indices as
surrogate markers, we tested their correlation with BAT activity

for the different durations of CE (Table 4). Change in core and
supraclavicular temperatures were significantly correlated with
BAT activity after 3–4 h of CE, respectively.

BAT Activation and Cardiovascular
Function in Response to CE
Finally, we investigated the cold-induced changes in markers of
cardiovascular function and cutaneous perfusion in BAT+ and
BAT− subjects. The average skin temperature (BAT−: −3.5◦C,
95% CI: −4.8 to −2.1, p = 0.001 and BAT+: −3.2◦C, 95% CI:
−3.7 to −2.7, p < 0.001, Figure 4A) and distal skin temperature
(BAT−: −7.4◦C, 95% CI: −5.1 to −9.7, p < 0.001 and BAT+:
−6.8◦C, 95%CI:−8.9 to−4.8, p< 0.001, Figure 4B) significantly
decreased in both groups. Moreover, both groups displayed a
similar degree of peripheral vasoconstriction during CE (BAT−:
−9.9◦C, 95% CI: −11.0 to −7.9, p < 0.001 and BAT+: −9.5◦C,
95% CI: −12.2 to −6.9, p < 0.001, Figure 4C). Additionally, CE
significantly decreased heart rate only in the BAT+ group (−2.5
beats/min, 95% CI:−4.7 to−0.3 p= 0.03, Figure 4D). We noted
no significant differences in systolic blood pressure (Figure 4E),
while diastolic blood pressure increased in both groups (BAT−:
11.75mmHg, 95% CI: 0.1–23.6, p= 0.052 and BAT+: 8.2mmHg,
95% CI: 1.0–15.4, p= 0.03, Figure 4F).

DISCUSSION

The results of this study provide evidence of the physiological
role of BAT in thermoregulation in people. BAT volume
was a significant predictor of the cold-induced change in
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TABLE 3 | Multiple linear regression analysis.

Independent predictors Univariate analysis Multiple regression analysis

Beta St. Error St. Beta p-value Beta St. Error St. Beta p-value

DEPENDENT VARIABLE: CHANGE IN CORE TEMPERATURE DURING THE 5h OF COLD EXPOSURE

BAT volumea 0.244 0.056 0.784 0.001 0.254 0.08 0.79 0.01

Body fat % −0.013 0.009 −0.398 0.159 −0.005 0.007 −0.15 0.534

Age −0.008 0.004 −0.481 0.08 0.002 0.005 0.13 0.641

DEPENDENT VARIABLE: CHANGE IN SUPRACLAVICULAR TEMPERATURE DURING THE 5h OF COLD EXPOSURE

BAT volumea 0.870 0.301 0.599 0.011 1.048 0.430 0.721 0.030

Body fat % −0.058 0.037 −0.373 0.140 −0.029 0.040 −0.191 0.475

Age −0.021 0.019 −0.278 0.279 0.024 0.023 0.319 0.319

DEPENDENT VARIABLE: CHANGE IN TRUNK TEMPERATURE DURING THE 5h OF COLD EXPOSURE

BAT volumea 0.570 0.413 0.326 0.187 0.973 0.501 0.557 0.070

Body fat % −0.67 0.040 −0.388 0.112 −0.094 0.045 −0.544 0.057

Age 0.002 0.022 0.023 0.927 0.066 0.028 0.742 0.032

aBAT volume was transformed to log10 [BAT volume (ml) + 1].

TABLE 4 | Indexes of brown adipose tissue volume and duration of cold

exposure.

Parameters 1h 2h 3h 4h 5h

Change in core

temperature (◦C)

r = 0.34 r = 0.37 r = 0.63 r = 0.67 r = 0.79

p = 0.24 p = 0.20 p = 0.016 p = 0.012 p = 0.001

Change in

supraclavicular skin

temperature (◦C)

r = 0.42 r = 0.42 r = 0.45 r = 0.56 r = 0.584

p = 0.1 p = 0.1 p = 0.1 p = 0.019 p = 0.014

BAT volume was transformed to log10 [BAT volume (ml) +1]. The correlation coefficients

were calculated using Pearson’s r. The bold values indicate statistically significant

correlations.

core temperature, adding to the notion that BAT activation
contributes to homeothermy. Moreover, having significant
amounts of detectable BAT was associated with increased
capacity to compensate for heat loss, as evidenced by the lower
ambient CE temperature tolerated in the BAT+ group without
shivering. Finally, the significant correlation between the cold-
induced change in core and supraclavicular temperature suggest
those two measures as a potential surrogate markers of BAT
activity.

The first line of evidence suggesting a physiological role of
BAT in thermoregulation is the finding that the subjects in
the BAT+ group demonstrated different response in their core
body temperature after 5 h of non-shivering CE compared to
BAT− subjects. Namely, core body temperature significantly
decreased in the BAT− group, but it remained unchanged in the
BAT+ group. BAT is strategically localized in close proximity to
central vessels (carotid artery, brachiocephalic artery, epicardial
coronary artery, cardiac veins, and others) (Sacks and Symonds,
2013), which increases the efficiency of heat transfer to core
organs.

We did not find any significant differences between the two
groups in the indices used to evaluate vasoconstriction/cutaneous
skin perfusion. Heart rate decreased significantly in BAT+
subjects during CE, while systolic blood pressure was significantly

elevated in the BAT+ group and marginally elevated in BAT−
subjects. These results suggest that BAT+ and BAT− subjects
may have distinct cardiovascular responses to CE.

Maintenance of core body temperature within a narrow range,
despite the influence of external stimuli, is of vital importance
to mammals (Mekjavic and Eiken, 2006). Early studies in
rodents demonstrated that BAT temperature increases during
CE, providing direct evidence for the thermoregulatory role
of BAT in mammals (Donhoffer et al., 1964). In the current
study, the intensity of CE, which was higher in the BAT+
group, was titrated individually to induce maximal non-shivering
thermogenesis. The small decrease in core temperature noted
in the BAT− participants indicates the decreased ability of this
group to keep the core temperature constant during prolonged
CE. Should this decrease in body core temperature have
continued, it would likely have resulted in shivering to prevent
further decline. The magnitude of change in core temperature
was strongly correlated with BAT volume, while the association
of BAT with core temperature remained statistically significant
after adjustment for age and adiposity. Muscle metabolic activity
was not significantly correlated with body core temperature.

Having established a role for BAT in thermoregulation in
adult humans, we tested the ability of core temperature and skin
temperatures to predict BAT volume. The methods currently
available to measure BAT volume and activity (PET/CT, MRI,
infrared thermography, etc.) are expensive and involve exposure
to radiation and/or require availability of specialized equipment.
Therefore, surrogate measures of BAT volume using methods
that are safer, easy to perform, and less expensive than those
outlined above, could become useful research tools. BAT is
primarily located in the supraclavicular, paravertebral, and,
perirenal areas. We hypothesized that skin temperatures adjacent
to BAT may provide low-cost, non-invasive surrogate markers
of BAT activity. Consistent with our hypothesis, BAT volume
significantly correlated with changes in core and supraclavicular
skin temperature. In addition, BAT volume was marginally
associated with the change in trunk temperature after adjustment
for age and adiposity. Studies in young lean subjects and children
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FIGURE 4 | Brown adipose tissue (BAT) activation, skin perfusion, and cardiovascular response to cold exposure (CE). (A) Average skin temperature in

subjects with detectable BAT (BAT+) and without detectable BAT (BAT−) in thermoneutral (TN) conditions and at 5 h of CE. (B) Distal (hand, foot) skin temperature in

BAT+ and BAT− subjects in TN conditions and after 5 h of CE. (C) Vasoconstriction/skin perfusion in BAT+ and BAT− subjects in TN conditions and at 5 h of CE. (D)

Heart rate in BAT+ and BAT− subjects in TN conditions and at 5 h of CE. (E,F) Systolic (E) and diastolic (F) blood pressure in BAT+ and BAT− subjects in TN

conditions and at 5 h of CE. Data are means and standard deviations. The data are means and SD. *p < 0.05, ***p = 0.001, ****p < 0.001 using paired t-test.

have proposed supraclavicular temperature (Symonds et al.,
2012; Boon et al., 2014; van der Lans et al., 2016) and the
gradient between the supraclavicular and the lateral upper chest
temperatures (Jang et al., 2014) as surrogate measures of BAT
activity. Here, we provide evidence that supraclavicular skin and
core body temperatures can be used markers of BAT volume
in a more diverse population when the other methods for the
detection of BAT activity are not available or contraindicated.

Results from previous studies, in which BAT has not been
measured support the link between temperature homeostasis
with age and adiposity (Hayward and Keatinge, 1981; Kenney
and Munce, 2003; Wijers et al., 2010). On the other hand, BAT
activity has been inversely associated with age (Cypess et al.,
2009; Yoneshiro et al., 2011) and adiposity (Saito et al., 2009;
van Marken Lichtenbelt et al., 2009). Therefore, it is likely that
BAT levels may at least partially explain this relationship between
adiposity, aging, and temperature homeostasis. The results of this
study have been statistically adjusted to account for a potential
confounding effect of age and adiposity and they support the
independent the role of BAT in thermoregulation in humans.
Moreover, when we restricted our groups to subjects matched for

age and adiposity the reported outcomes between the two groups
remained the same further supporting our conclusions (data not
shown).

Our results support the notion that BAT plays a role
in thermoregulation by increasing heat production. BAT and
adiposity are inversely correlated (van Marken Lichtenbelt et al.,
2009). Furthermore, weight loss (Vijgen et al., 2012; Orava et al.,
2013) and chronic CE (Yoneshiro et al., 2013) increase BAT
and decrease body fat. We could thus speculate that a chronic
positive energy balance that increases adiposity may lead to
greater insulation and, potentially, underutilization of BAT for
heat production. This will ultimately result in further weight gain
and its related metabolic abnormalities (hyperlipidemia, insulin
resistance, etc.).

Thermoregulation constitutes an important homeostatic
mechanism, tightly linked to survival. This study provides
evidence for the physiologically significant role of BAT in
thermoregulation in people. Moreover, we propose two indices
that can be used to estimate BAT volume when radiological
approaches or other techniques are not available, and/or their use
is contraindicated. Further research is needed to understand the
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role of human BAT in pathological conditions that cause a shift in
core body temperature from the null zone (fever, anesthesia) and
conditions that affect heat loss or production (e.g., burn injury).
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