276 research outputs found
Coarse Molecular Dynamics of a Peptide Fragment: Free Energy, Kinetics, and Long-Time Dynamics Computations
We present a ``coarse molecular dynamics'' approach and apply it to studying
the kinetics and thermodynamics of a peptide fragment dissolved in water. Short
bursts of appropriately initialized simulations are used to infer the
deterministic and stochastic components of the peptide motion parametrized by
an appropriate set of coarse variables. Techniques from traditional numerical
analysis (Newton-Raphson, coarse projective integration) are thus enabled;
these techniques help analyze important features of the free-energy landscape
(coarse transition states, eigenvalues and eigenvectors, transition rates,
etc.). Reverse integration of (irreversible) expected coarse variables backward
in time can assist escape from free energy minima and trace low-dimensional
free energy surfaces. To illustrate the ``coarse molecular dynamics'' approach,
we combine multiple short (0.5-ps) replica simulations to map the free energy
surface of the ``alanine dipeptide'' in water, and to determine the ~ 1/(1000
ps) rate of interconversion between the two stable configurational basins
corresponding to the alpha-helical and extended minima.Comment: The article has been submitted to "The Journal of Chemical Physics.
Robust oscillations in SIS epidemics on adaptive networks: Coarse-graining by automated moment closure
We investigate the dynamics of an epidemiological
susceptible-infected-susceptible (SIS) model on an adaptive network. This model
combines epidemic spreading (dynamics on the network) with rewiring of network
connections (topological evolution of the network). We propose and implement a
computational approach that enables us to study the dynamics of the network
directly on an emergent, coarse-grained level. The approach sidesteps the
derivation of closed low-dimensional approximations. Our investigations reveal
that global coupling, which enters through the awareness of the population to
the disease, can result in robust large-amplitude oscillations of the state and
topology of the network.Comment: revised version 6 pages, 4 figure
Equation-free analysis of a dynamically evolving multigraph
In order to illustrate the adaptation of traditional continuum numerical
techniques to the study of complex network systems, we use the equation-free
framework to analyze a dynamically evolving multigraph. This approach is based
on coupling short intervals of direct dynamic network simulation with
appropriately-defined lifting and restriction operators, mapping the detailed
network description to suitable macroscopic (coarse-grained) variables and
back. This enables the acceleration of direct simulations through Coarse
Projective Integration (CPI), as well as the identification of coarse
stationary states via a Newton-GMRES method. We also demonstrate the use of
data-mining, both linear (principal component analysis, PCA) and nonlinear
(diffusion maps, DMAPS) to determine good macroscopic variables (observables)
through which one can coarse-grain the model. These results suggest methods for
decreasing simulation times of dynamic real-world systems such as
epidemiological network models. Additionally, the data-mining techniques could
be applied to a diverse class of problems to search for a succint,
low-dimensional description of the system in a small number of variables
- …