We present a ``coarse molecular dynamics'' approach and apply it to studying
the kinetics and thermodynamics of a peptide fragment dissolved in water. Short
bursts of appropriately initialized simulations are used to infer the
deterministic and stochastic components of the peptide motion parametrized by
an appropriate set of coarse variables. Techniques from traditional numerical
analysis (Newton-Raphson, coarse projective integration) are thus enabled;
these techniques help analyze important features of the free-energy landscape
(coarse transition states, eigenvalues and eigenvectors, transition rates,
etc.). Reverse integration of (irreversible) expected coarse variables backward
in time can assist escape from free energy minima and trace low-dimensional
free energy surfaces. To illustrate the ``coarse molecular dynamics'' approach,
we combine multiple short (0.5-ps) replica simulations to map the free energy
surface of the ``alanine dipeptide'' in water, and to determine the ~ 1/(1000
ps) rate of interconversion between the two stable configurational basins
corresponding to the alpha-helical and extended minima.Comment: The article has been submitted to "The Journal of Chemical Physics.