55 research outputs found

    Tungsten and barium transport in the internal plasma of hollow cathodes

    Get PDF
    The effect of tungsten erosion, transport, and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from 8200 h and 30 352 h ion engine wear tests. Erosion and subsequent redeposition of tungsten in the electron emission zone at the downstream end of the insert reduce the porosity of the tungsten matrix, preventing the flow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative

    Metallic Wall Hall Thrusters

    Get PDF
    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional nonmagnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device

    The effect of cathode geometry on barium transport in hollow cathode plasmas

    Get PDF
    The effect of barium transport on the operation of dispenser hollow cathodes was investigated in numerical modeling of a cathode with two different orifice sizes. Despite large differences in cathode emitter temperature, emitted electron current density, internal xenon neutral and plasma densities, and size of the plasma-surface interaction region, the barium transport in the two geometries is qualitatively very similar. Barium is produced in the insert and flows to the surface through the porous structure. A buildup of neutral Ba pressure in the plasma over the emitter surface can suppress the reactions supplying the Ba, restricting the net production rate. Neutral Ba flows into the dense Xe plasma and has a high probability of being ionized at the periphery of this zone. The steady state neutral Ba density distribution is determined by a balance between pressure gradient forces and the drag force associated with collisions between neutral Ba and neutral Xe atoms. A small fraction of the neutral Ba is lost upstream. The majority of the neutral Ba is ionized in the high temperature Xe plasma and is pushed back to the emitter surface by the electric field. The steady state Ba^+ ion density distribution results from a balance between electrostatic and pressure forces, neutral Xe drag and Xe^+ ion drag with the dominant forces dependent on location in the discharge. These results indicate that hollow cathodes are very effective at recycling Ba within the discharge and therefore maintain a high coverage of Ba on the emitter surface, which reduces the work function and sustains high electron emission current densities at moderate temperatures. Barium recycling is more effective in the cathode with the smaller orifice because the Ba is ionized in the dense Xe plasma concentrated just upstream of the orifice and pushed back into the hollow cathode. Despite a lower emitter temperature, the large orifice cathode has a higher Ba loss rate through the orifice because the Xe plasma density peaks further upstream

    Barium depletion in hollow cathode emitters

    Get PDF
    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al_2O_3 source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values

    Oxygen transport in the internal xenon plasma of a dispenser hollow cathode

    Get PDF
    Reactive gases such as oxygen and water vapor modify the surface morphology of BaO dispenser cathodes and degrade the electron emission properties. For vacuum cathodes operating at fixed temperature, the emission current drops rapidly when oxygen adsorbs on top of the low work function surface. Previous experiments have shown that plasma cathodes are more resistant to oxygen poisoning and can operate with O_2 partial pressures one to two orders of magnitude higher than vacuum cathodes before the onset of poisoning occurs. Plasma cathodes used for electric thrusters are typically operated with xenon; however, gas phase barium, oxygen, and tungsten species may be found in small concentrations. The densities of these minor species are small compared with the plasma density, and thus, their presence in the discharge does not significantly alter the xenon plasma parameters. It is important, however, to consider the transport of these minor species as they may deposit on the emitter surface and affect the electron emission properties. In this work, we present the results of a material transport model used to predict oxygen fluxes to the cathode surface by solving the species conservation equations in a cathode with a 2.25 mm diameter orifice operated at a discharge current of 15 A, a Xe flow rate of 3.7 sccm, and 100 ppm of O_2. The dominant ionization process for O_2 is resonant charge exchange with xenon ions. Ba is effectively recycled in the plasma; however, BaO and O_2 are not. The model shows that the oxygen flux to the surface is not diffusion-limited; therefore, the high resistance to oxygen poisoning observed in plasma cathodes likely results from surface processes not considered here

    Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters

    Get PDF
    HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions

    Plasma Heating of Inert Gas Hollow Cathode Inserts

    Get PDF
    It is shown that in hollow cathodes with a very small-diameter orifice, operating at a low current, the plasma density peaks inside the orifice, and the cathode is heated primarily by plasma bombardment in the orifice and along the orifice plate. As the orifice diameter increases, the peak plasma density moves upstream of the orifice, and ion and electron bombardment heat both the orifice plate and the insert. In hollow cathodes with a large-diameter orifice the plasma extends along much of the insert, the plasma density peaks well within the insert region, and the cathode is heated primarily by ion bombardment of the insert

    Keeper Wear Mechanisms in the XIPS © 25-cm Neutralizer Cathode Assembly

    Get PDF
    Abstract: The 25-cm Xenon Ion Propulsion System (XIPS © ) thruster has been life tested for over 16,000 hours for communication satellite station keeping applications. The neutralizer cathode assembly (NCA) was observed to experience a significant amount of erosion by the end of the life test. While the NCA competed the test successfully and the life exceeds the requirement for the Boeing 702 satellite orbit-raising and station-keeping mission, erosion of the NCA keeper is a concern for longer duration NASA missions. The performance of a 25-cm neutralizer cathode has been investigated in the JPL cathode test facilities to determine the mechanisms responsible for the observed erosion in the thruster life test. Experiments with fast scanning emissive probes showed that the thruster life test started in the 4.5 kW high power mode with the neutralizer cathode operating normally in the quiescent "spot mode" where low erosion rates are observed. After 2880 hours of operation in the high power mode, the thruster operation was changed to the 2 kW low power station-keeping mode and continued in that mode for remaining 13,370 hours of the test. The emissive probe measurements indicate that the neutralizer cathode started out in the low power mode with significant plasma oscillations in the near cathode region. This behavior is indicative of "plume-mode" operation, which produces energetic ions and is well correlated to high keeper and cathode electrode erosion rates. A reduction in the neutralizer cathode orifice diameter was effective in re-establishing the spot-mode operation and eliminating the oscillations responsible for energetic ion production. Additional wear reduction can be achieved using alternative materials with lower sputtering yields. A wear test is now underway of a modified version of this neutralizer cathode that incorporates the smaller orifice diameter and a replacement of the standard molybdenum keeper material by tantalum. The wear test, combined with JPL's validated neutralizer cathode life models, is intended to show that the erosion rate of the present keeper and of the smaller cathode-plate orifice is insignificant thereby demonstrating sufficient neutralizer life for deep space missions

    Magnetically Shielded Miniature Hall Thruster: Design Improvement and Performance Analysis

    Get PDF
    ABSTRACT: Magnetic shielding has been shown to dramatically reduce discharge channel wall erosion of high powered Hall thrusters, thereby increasing their useful lifetimes. However, unique challenges exist for developing a low power magnetically shielded Hall thruster. A previously tested 4 cm magnetically shielded miniature Hall thruster demonstrated low performance of its magnetic circuit, resulting in an asymmetric field topology, low thrust, and low efficiency. A 6 cm magnetically shielded Hall thruster was developed to improve upon the 4 cm design. The 6 cm device, which generated a symmetric and fully shielded field topology, was tested at 30 operating conditions ranging from 160 W to nearly 750 W. Visual observation of the plasma and discharge channel during and after operation was used to assess the level of magnetic shielding that was achieved. Hall2De plasma simulations were also used to offer further evidence of magnetic shielding. Thrust stand measurements provided thrust, anode specific impulse, and anode efficiency data at each operating condition. Pole face erosion, which is believed to be associated with the 6 cm thruster's non-optimized magnetic shielding field topology and strength, identify the near-term challenges to resolve before long lifetimes and high efficiencies can be achieved in low power Hall thrusters
    • …
    corecore