12 research outputs found

    Aluminum Silicate Nanotube Coating of Siloxane-Poly(lactic acid)-Vaterite Composite Fibermats for Bone Regeneration

    Get PDF
    In our earlier work, a flexible fibermat consisting of a biodegradable composite with soluble silicate species, which has been reported to enhance bone formation, was prepared successfully using poly(L-lactic acid) and siloxane-containing calcium carbonate particles by electrospinning. The fibermat showed enhanced bone formation in an in vivo test. In the present work, to improve the hydrophilicity of skeletal fibers in a fibermat, they were coated with nanotubular aluminum silicate crystals, which have a hydrophilic surface that has excellent affinity to body fluids and a high surface area advantageous for pronounced protein adsorption. The nanotubes were coated easily on the fiber surface using an electrophoretic method. In a conventional contact angle test, a drop of water rapidly penetrated into the nanotube-coated fibermat. The culture test using murine osteoblast-like cells (MC3T3-E1) showed that the cell attachment to the nanotube-coated fibermat at an early stage after seeding was enhanced in comparison with that to the noncoated one. This approach may provide a new method of improving the surface of polymer-based biomaterials

    Preparation and Rheological Characterization of Imogolite Hydrogels

    Get PDF
    Imogolite, one of the aluminium silicates, has a nanotube structure and has been known to form gel under alkaline condition. Imogolite nanotubes were synthesized in an acidic solution with various tube lengths by controlling the aging time from 1 d to 14 d. The length of the nanotubes grew from 100 nm to several μm as the aging time. Pure imogolite hydrogels were prepared by applying a salting-out method and centrifugation from its dispersed solutions with various tube lengths and solution pH. Imogolite hydrogel can be classified as the physically cross-linked one; the structure of the gel network is considered to be the entanglements and hydrogen bonding among nanotubes. The theoretical water contents of the prepared hydrogels were calculated as ∼99.7% in average. Gelation percentage significantly increased as the length of imogolite nanotubes. Whereas hydrogel prepared from 4 d aging sample showed the highest storage modulus of ∼970 Pa, it was found that the hydrogel could be prepared in the pH range from 6 to 10. The gel strength reached the highest value of 1000 Pa when the gel was prepared from the imogolite dispersed solution of pH 8. It could be explained by the surface charge variation of the imogolite

    A case in which water intoxication due to excessive water ingestion did not inhibit the secretion of arginine vasopressin

    Get PDF
    We experienced a case of water intoxication due to excessive water ingestion that was complicated by the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). A 60-year-old Japanese woman with nervous depression drank too much lemon tea within several hours, vomited ten times, and developed disturbed consciousness and dysarthria. Her plasma arginine vasopressin (AVP) concentration was not inhibited,although her plasma osmolality was low. Nausea and/or stress may stimulate AVP secretion regardless of the hypo-osmolality. We believe that dilatation of her stomach due to excessive liquid ingestion and cerebral edema due to hypo-osmolality brought on her nausea. Stress induced by a psychiatric problem and/or admission to a hospital may also stimulate AVP secretion by the central nervous system. Treatingnausea and stress may help reduce AVP secretion and resolve hyponatremia

    Aluminum Silicate Nanotube Modification of Cotton-Like Siloxane-poly(L-lactic acid)-vaterite Composites

    Get PDF
    In our earlier work, a cotton-like biodegradable composite, consisting of poly(L-lactic acid) with siloxane-containing vaterite, has been prepared by electrospinning. In the present work, the fibers skeleton of the cotton-like composites was modified successfully with imogolite, which is hydrophilic and biocompatible, via a dip process using ethanol diluted solution to improve the cellular initial attachment. Almost no change in the fiber morphology after the surface modification was observed. The surface-modified composite showed the similar calcium and silicate ions releasabilities, for activating the osteoblasts, as an unmodified one. Cell culture tests showed that the initial adhesion of murine osteoblast-like cells on the surface of the fibers was enhanced by surface modification

    Synthesis of single silica nanotubes in the presence of citric acid

    No full text
    Citric acid has been employed as a structural modifier for the first time to synthesize single silica nanotubes via a sol-gel process at room temperature. XRD results reveal the amorphous nature of the silica framework. SEM and TEM images show that the nanotubes were 0.5-20 mum in length, and 50-500 nm in width. TG-DTA and FTIR results indicate that the possible interaction between citric acid molecules and inorganic species should be very weak. The structural direction of ammonium citrate crystals under appropriate synthetic conditions was argued to explain the formation of particular morphologies

    Difference FTIR Spectroscopy of Jumping Spider Rhodopsin‑1 at 77 K

    No full text
    Animal visual rhodopsins can be classified into monostable and bistable rhodopsins, which are typically found in vertebrates and invertebrates, respectively. The former example is bovine rhodopsin (BovRh), whose structures and functions have been extensively studied. On the other hand, those of bistable rhodopsins are less known, despite their importance in optogenetics. Here, low-temperature Fourier-transform infrared (FTIR) spectroscopy was applied to jumping spider rhodopsin-1 (SpiRh1) at 77 K, and the obtained light-induced spectral changes were compared with those of squid rhodopsin (SquRh) and BovRh. Although chromophore distortion of the resting state monitored by HOOP vibrations is not distinctive between invertebrate and vertebrate rhodopsins, distortion of the all-trans chromophore after photoisomerization is unique for BovRh, and the distortion was localized at the center of the chromophore in SpiRh1 and SquRh. Highly conserved aspartate (D83 in BovRh) does not change the hydrogen-bonding environment in invertebrate rhodopsins. Thus, present FTIR analysis provides specific structural changes, leading to activation of invertebrate and vertebrate rhodopsins. On the other hand, the analysis of O–D stretching vibrations in D2O revealed unique features of protein-bound water molecules. Numbers of water bands in SpiRh1 and SquRh were less and more than those in BovRh. The X-ray crystal structure of SpiRh1 observed a bridged water molecule between the protonated Schiff base and its counterion (E194), but strongly hydrogen-bonded water molecules were never detected in SpiRh1, as well as SquRh and BovRh. Thus, absence of strongly hydrogen-bonded water molecules is substantial for animal rhodopsins, which is distinctive from microbial rhodopsins

    Human Transcription Elongation Factor NELF: Identification of Novel Subunits and Reconstitution of the Functionally Active Complex

    No full text
    The multisubunit transcription elongation factor NELF (for negative elongation factor) acts together with DRB (5,6-dichloro-1-β-d-ribofuranosylbenzimidazole) sensitivity-inducing factor (DSIF)/human Spt4-Spt5 to cause transcriptional pausing of RNA polymerase II (RNAPII). NELF activity is associated with five polypeptides, A to E. NELF-A has sequence similarity to hepatitis delta antigen (HDAg), the viral protein that binds to and activates RNAPII, whereas NELF-E is an RNA-binding protein whose RNA-binding activity is critical for NELF function. To understand the interactions of DSIF, NELF, and RNAPII at a molecular level, we identified the B, C, and D proteins of human NELF. NELF-B is identical to COBRA1, recently reported to associate with the product of breast cancer susceptibility gene BRCA1. NELF-C and NELF-D are highly related or identical to the protein called TH1, of unknown function. NELF-B and NELF-C or NELF-D are integral subunits that bring NELF-A and NELF-E together, and coexpression of these four proteins in insect cells resulted in the reconstitution of functionally active NELF. Detailed analyses using mutated recombinant complexes indicated that the small region of NELF-A with similarity to HDAg is critical for RNAPII binding and for transcriptional pausing. This study defines several important protein-protein interactions and opens the way for understanding the mechanism of DSIF- and NELF-induced transcriptional pausing
    corecore