2 research outputs found
LA COMPETENCIA DE TRABAJO BAJO PRESIĂ“N EN LA CORRECTA ADMINISTRACIĂ“N DE MEDICAMENTOS POR LOS PROFESIONALES DE ENFERMERĂŤA.
El desarrollo de una competencia implica el ejercicio del saber, el saber hacer y el ser. En efecto, el desempeño en el “Trabajo Bajo PresiĂłn”, se define como la capacidad del ser humano para laborar bajo condiciones exigentes de tiempo o de exceso de tareas, manteniendo la eficiencia laboral, el autocontrol y la coherencia personal. (González Robledo, 2009). La administraciĂłn de medicamentos constituye un procedimiento a cargo del profesional de enfermerĂa, a travĂ©s del cual se suministra uno o varios fármacos al paciente para lograr un efecto especĂfico. Por ello, se trazĂł como objetivo de investigaciĂłn: Reflexionar la importancia del desarrollo de la competencia de trabajo bajo presiĂłn para la correcta administraciĂłn de medicamentos por parte de los profesionales de enfermerĂa.The development of a competence implies the exercise of knowledge, knowing how to do and being. Indeed, performance in "Work Under Pressure" is defined as the ability of the human being to work under demanding conditions of time or excess of tasks, maintaining work efficiency, self-control and personal coherence. (González Robledo, 2009). Medication administration is a procedure carried out by the nursing professional, through which one or more drugs are supplied to the patient to achieve a specific effect. For this reason, the research objective was: To reflect on the importance of developing the competence to work under pressure for the correct administration of medications by nursing professionals
\u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution
The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu