5 research outputs found

    HER3 Is an Actionable Target in Advanced Prostate Cancer.

    Get PDF
    It has been recognized for decades that ERBB signaling is important in prostate cancer, but targeting ERBB receptors as a therapeutic strategy for prostate cancer has been ineffective clinically. However, we show here that membranous HER3 protein is commonly highly expressed in lethal prostate cancer, associating with reduced time to castration resistance (CR) and survival. Multiplex immunofluorescence indicated that the HER3 ligand NRG1 is detectable primarily in tumor-infiltrating myelomonocytic cells in human prostate cancer; this observation was confirmed using single-cell RNA sequencing of human prostate cancer biopsies and murine transgenic prostate cancer models. In castration-resistant prostate cancer (CRPC) patient-derived xenograft organoids with high HER3 expression as well as mouse prostate cancer organoids, recombinant NRG1 enhanced proliferation and survival. Supernatant from murine bone marrow-derived macrophages and myeloid-derived suppressor cells promoted murine prostate cancer organoid growth in vitro, which could be reversed by a neutralizing anti-NRG1 antibody and ERBB inhibition. Targeting HER3, especially with the HER3-directed antibody-drug conjugate U3-1402, exhibited antitumor activity against HER3-expressing prostate cancer. Overall, these data indicate that HER3 is commonly overexpressed in lethal prostate cancer and can be activated by NRG1 secreted by myelomonocytic cells in the tumor microenvironment, supporting HER3-targeted therapeutic strategies for treating HER3-expressing advanced CRPC. SIGNIFICANCE: HER3 is an actionable target in prostate cancer, especially with anti-HER3 immunoconjugates, and targeting HER3 warrants clinical evaluation in prospective trials

    Historia de la Facultad de Ciencias de la Educación de Paraná (Argentina), 1973-1983

    Get PDF
    En este artículo se procura reconstruir la historia de la Facultad de Ciencias de la Educación de la Universidad Nacional de Entre Ríos durante un lapso acotado a una década del S. XX. A partir de las múltiples variables que componen la realidad universitaria y su contexto y con la pretensión de lograr la comprensión de la vida institucional, se enhebra el análisis de los proyectos institucionales, las orientaciones ideológico-académicas, los perfiles formativos en pugna, el accionar de los sujetos, la inserción de la facultad en el medio, los conflictos con ciertas tradiciones a partir de vertebrar un importante y heterogéneo corpus documental (fuentes oficiales, archivos institucionales, planes de estudio, programas de cátedra, información periodística, entrevistas a informantes calificados y padrón de egresados)

    Targeting Bromodomain and Extra-Terminal (BET) Family Proteins in Castration-Resistant Prostate Cancer (CRPC).

    No full text
    Purpose: Persistent androgen receptor (AR) signaling drives castration-resistant prostate cancer (CRPC) and confers resistance to AR-targeting therapies. Novel therapeutic strategies to overcome this are urgently required. We evaluated how bromodomain and extra-terminal (BET) protein inhibitors (BETi) abrogate aberrant AR signaling in CRPC.Experimental Design: We determined associations between BET expression, AR-driven transcription, and patient outcome; and the effect and mechanism by which chemical BETi (JQ1 and GSK1210151A; I-BET151) and BET family protein knockdown regulates AR-V7 expression and AR signaling in prostate cancer models.Results: Nuclear BRD4 protein expression increases significantly (P ≤ 0.01) with castration resistance in same patient treatment-naïve (median H-score; interquartile range: 100; 100-170) and CRPC (150; 110-200) biopsies, with higher expression at diagnosis associating with worse outcome (HR, 3.25; 95% CI, 1.50-7.01; P ≤ 0.001). BRD2, BRD3, and BRD4 RNA expression in CRPC biopsies correlates with AR-driven transcription (all P ≤ 0.001). Chemical BETi, and combined BET family protein knockdown, reduce AR-V7 expression and AR signaling. This was not recapitulated by C-MYC knockdown. In addition, we show that BETi regulates RNA processing thereby reducing alternative splicing and AR-V7 expression. Furthermore, BETi reduce growth of prostate cancer cells and patient-derived organoids with known AR mutations, AR amplification and AR-V7 expression. Finally, BETi, unlike enzalutamide, decreases persistent AR signaling and growth (P ≤ 0.001) of a patient-derived xenograft model of CRPC with AR amplification and AR-V7 expression.Conclusions: BETi merit clinical evaluation as inhibitors of AR splicing and function, with trials demonstrating their blockade in proof-of-mechanism pharmacodynamic studies. Clin Cancer Res; 24(13); 3149-62. ©2018 AACR

    Dickkopf-1 Can Lead to Immune Evasion in Metastatic Castration-Resistant Prostate Cancer

    No full text
    PURPOSE Metastatic castration-resistant prostate cancer (mCRPC) with low androgen receptor (AR) and without neuroendocrine signaling, termed double-negative prostate cancer (DNPC), is increasingly prevalent in patients treated with AR signaling inhibitors and is in need of new biomarkers and therapeutic targets. METHODS Candidate genes enriched in DNPC were determined using differential gene expression analysis of discovery and validation cohorts of mCRPC biopsies. Laboratory studies were carried out in human mCRPC organoid cultures, prostate cancer (PCa) cell lines, and mouse xenograft models. Epigenetic studies were carried out in a rapid autopsy cohort. RESULTS Dickkopf-1 (DKK1) expression is increased in DNPC relative to prostate-specific antigen (PSA)–expressing mCRPC in the Stand Up to Cancer/Prostate Cancer Foundation discovery cohort (11.2 v 0.28 reads per kilobase per million mapped reads; q < 0.05; n = 117) and in the University of Washington/Fred Hutchinson Cancer Research Center cohort (9.2 v 0.99 fragments per kilobase of transcript per million mapped reads; P < .0001). DKK1 expression can be regulated by activated Wnt signaling in vitro and correlates with activating canonical Wnt signaling mutations and low PSA mRNA in mCRPC biopsies ( P < .05). DKK1 hypomethylation was associated with increased DKK1 mRNA expression (Pearson r = −0.66; P < .0001) in a rapid autopsy cohort (n = 7). DKK1-high mCRPC biopsies are infiltrated with significantly higher numbers of quiescent natural killer (NK) cells ( P < .005) and lower numbers of activated NK cells ( P < .0005). Growth inhibition of the human PCa model PC3 by the anti-DKK1 monoclonal antibody DKN-01 depends on the presence of NK cells in a severe combined immunodeficient xenograft mouse model. CONCLUSION These results support DKK1 as a contributor to the immunosuppressive tumor microenvironment of DNPC. These data have provided the rationale for a clinical trial targeting DKK1 in mCRPC (ClinicalTrials.gov identifier: NCT03837353 )
    corecore