2 research outputs found

    Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts

    Get PDF
    Background: Genetic factors influence chronic obstructive pulmonary disease (COPD) risk, but the individual variants that have been identified have small effects. We hypothesised that a polygenic risk score using additional variants would predict COPD and associated phenotypes.Methods: We constructed a polygenic risk score using a genome wide association study of lung function (FEV1 and FEV1/forced vital capacity [FVC]) from the UK Biobank and SpiroMeta. We tested this polygenic risk score in nine cohorts of multiple ethnicities for an association with moderate-to-severe COPD (defined as FEV1/FVC Findings: The polygenic risk score was associated with COPD in European (odds ratio [OR] per SD 1·81 [95% CI 1·74–1·88] and non-European (1·42 [1·34–1·51]) populations. Compared with the first decile, the tenth decile of the polygenic risk score was associated with COPD, with an OR of 7·99 (6·56–9·72) in European ancestry and 4·83 (3·45–6·77) in non-European ancestry cohorts. The polygenic risk score was superior to previously described genetic risk scores and, when combined with clinical risk factors (ie, age, sex, and smoking pack-years), showed improved prediction for COPD compared with a model comprising clinical risk factors alone (AUC 0·80 [0·79–0·81] vs 0·76 [0·75 0·76]). The polygenic risk score was associated with CT imaging phenotypes, including wall area percent, quantitative and qualitative measures of emphysema, local histogram emphysema patterns, and destructive emphysema subtypes. The polygenic risk score was associated with a reduced lung growth pattern. Interpretation: A risk score comprised of genetic variants can identify a small subset of individuals at markedly increased risk for moderate-to-severe COPD, emphysema subtypes associated with cigarette smoking, and patterns of reduced lung growth.</div

    Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis

    Full text link
    Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide1. We performed a genetic association in 15,256 cases and 47,936 controls, with replication of select top results (P < 5x10-6) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci at genome-wide significance, including 13 new associations with COPD. Nine of these 13 loci have been associated with lung function in general population samples2-7; however, 4 (EEFSEC, DSP, MTCL1, and SFTPD) are novel. We noted 2 loci shared with pulmonary fibrosis8,9 (FAM13A and DSP) but with opposite risk alleles for COPD. None of our loci overlapped with genome-wide associations for asthma; however, one locus has been implicated in the joint susceptibility to asthma and obesity10. We also identified genetic correlation between COPD and asthma. Our findings highlight novel loci, demonstrate the importance of specific lung function loci to COPD, and identify potential regions of genetic overlap between COPD and other respiratory diseases
    corecore