12 research outputs found

    Actions to halt biodiversity loss generally benefit the climate

    Get PDF
    The two most urgent and interlinked environmental challenges humanity faces are climate change and biodiversity loss. We are entering a pivotal decade for both the international biodiversity and climate change agendas with the sharpening of ambitious strategies and targets by the Convention on Biological Diversity and the United Nations Framework Convention on Climate Change. Within their respective Conventions, the biodiversity and climate interlinked challenges have largely been addressed separately. There is evidence that conservation actions that halt, slow or reverse biodiversity loss can simultaneously slow anthropogenic mediated climate change significantly. This review highlights conservation actions which have the largest potential for mitigation of climate change. We note that conservation actions have mainly synergistic benefits and few antagonistic trade-offs with climate change mitigation. Specifically, we identify direct co-benefits in 14 out of the 21 action targets of the draft post-2020 global biodiversity framework of the Convention on Biological Diversity, notwithstanding the many indirect links that can also support both biodiversity conservation and climate change mitigation. These relationships are context and scale-dependent; therefore, we showcase examples of local biodiversity conservation actions that can be incentivized, guided and prioritized by global objectives and targets. The close interlinkages between biodiversity, climate change mitigation, other nature\u27s contributions to people and good quality of life are seldom as integrated as they should be in management and policy. This review aims to re-emphasize the vital relationships between biodiversity conservation actions and climate change mitigation in a timely manner, in support to major Conferences of Parties that are about to negotiate strategic frameworks and international goals for the decades to come

    Photosynthetic performance of lichen transplants as early indicator of climatic stress along an altitudinal gradient in the arid Mediterranean area

    No full text
    A climatic change was simulated transplanting samples of the lichens Evernia prunastri (L.) Ach. and Pseudevernia furfuracea (L.) Zopf v. furfuracea along a 1,400 m altitudinal gradient in the northern side of the island of Crete (Greece). The working hypothesis was that the photosynthetic performance (i.e. pigment content, chlorophyll degradation and photosynthetic efficiency) of transplanted lichens varies along the altitudinal gradient. The overall effect observed was a general depression of the photosynthetic performance along the gradient. Concentrations of chlorophyll a, chlorophyll b and carotenoids decreased with decreasing elevation and along with the hottest and driest months of the year, with chlorophyll b being the most sensitive parameter to dry conditions. Chlorophyll degradation decreased with increasing elevation. The exposure period was the main factor affecting photosynthetic efficiency, with lower values during summer months. We argued that the water content of lichen thalli is the most important factor determining differences in photosynthesis under the experimental conditions. This allowed to suggest that the lichen photosynthetic performance deserves further investigation as early biological indicator of atmospheric stress induced by dry conditions and, to a greater extent, for the assessment of the desertification risk in the arid Mediterranean environment

    Actions to halt biodiversity loss generally benefit the climate

    Get PDF
    The two most urgent and interlinked environmental challenges humanity faces are climate change and biodiversity loss. We are entering a pivotal decade for both the international biodiversity and climate change agendas with the sharpening of ambitious strategies and targets by the Convention on Biological Diversity and the United Nations Framework Convention on Climate Change. Within their respective Conventions, the biodiversity and climate interlinked challenges have largely been addressed separately. There is evidence that conservation actions that halt, slow or reverse biodiversity loss can simultaneously slow anthropogenic mediated climate change significantly. This review highlights conservation actions which have the largest potential for mitigation of climate change. We note that conservation actions have mainly synergistic benefits and few antagonistic trade-offs with climate change mitigation. Specifically, we identify direct co-benefits in 14 out of the 21 action targets of the draft post-2020 global biodiversity framework of the Convention on Biological Diversity, notwithstanding the many indirect links that can also support both biodiversity conservation and climate change mitigation. These relationships are context and scale-dependent; therefore, we showcase examples of local biodiversity conservation actions that can be incentivized, guided and prioritized by global objectives and targets. The close interlinkages between biodiversity, climate change mitigation, other nature’s contributions to people and good quality of life are seldom as integrated as they should be in management and policy. This review aims to re-emphasize the vital relationships between biodiversity conservation actions and climate change mitigation in a timely manner, in support to major Conferences of Parties that are about to negotiate strategic frameworks and international goals for the decades to come
    corecore