3,669 research outputs found

    Strongly enhanced inelastic collisions in a Bose-Einstein condensate near Feshbach resonances

    Full text link
    The properties of Bose-Einstein condensed gases can be strongly altered by tuning the external magnetic field near a Feshbach resonance. Feshbach resonances affect elastic collisions and lead to the observed modification of the scattering length. However, as we report here, this is accompanied by a strong increase in the rate of inelastic collisions. The observed three-body loss rate in a sodium Bose-Einstein condensation increased when the scattering length was tuned to both larger or smaller values than the off-resonant value. This observation and the maximum measured increase of the loss rate by several orders of magnitude are not accounted for by theoretical treatments. The strong losses impose severe limitations for using Feshbach resonances to tune the properties of Bose-Einstein condensates. A new Feshbach resonance in sodium at 1195 G was observed.Comment: 4 pages, 3 figure

    Developing and implementing an integrated delirium prevention system of care:a theory driven, participatory research study

    Get PDF
    Background: Delirium is a common complication for older people in hospital. Evidence suggests that delirium incidence in hospital may be reduced by about a third through a multi-component intervention targeted at known modifiable risk factors. We describe the research design and conceptual framework underpinning it that informed the development of a novel delirium prevention system of care for acute hospital wards. Particular focus of the study was on developing an implementation process aimed at embedding practice change within routine care delivery. Methods: We adopted a participatory action research approach involving staff, volunteers, and patient and carer representatives in three northern NHS Trusts in England. We employed Normalization Process Theory to explore knowledge and ward practices on delirium and delirium prevention. We established a Development Team in each Trust comprising senior and frontline staff from selected wards, and others with a potential role or interest in delirium prevention. Data collection included facilitated workshops, relevant documents/records, qualitative one-to-one interviews and focus groups with multiple stakeholders and observation of ward practices. We used grounded theory strategies in analysing and synthesising data. Results: Awareness of delirium was variable among staff with no attention on delirium prevention at any level; delirium prevention was typically neither understood nor perceived as meaningful. The busy, chaotic and challenging ward life rhythm focused primarily on diagnostics, clinical observations and treatment. Ward practices pertinent to delirium prevention were undertaken inconsistently. Staff welcomed the possibility of volunteers being engaged in delirium prevention work, but existing systems for volunteer support were viewed as a barrier. Our evolving conception of an integrated model of delirium prevention presented major implementation challenges flowing from minimal understanding of delirium prevention and securing engagement of volunteers alongside practice change. The resulting Prevention of Delirium (POD) Programme combines a multi-component delirium prevention and implementation process, incorporating systems and mechanisms to introduce and embed delirium prevention into routine ward practices. Conclusions: Although our substantive interest was in delirium prevention, the conceptual and methodological strategies pursued have implications for implementing and sustaining practice and service improvements more broadly

    Experimental observation of the Bogoliubov transformation for a Bose-Einstein condensed gas

    Full text link
    Phonons with wavevector q/q/\hbar were optically imprinted into a Bose-Einstein condensate. Their momentum distribution was analyzed using Bragg spectroscopy with a high momentum transfer. The wavefunction of the phonons was shown to be a superposition of +q and -q free particle momentum states, in agreement with the Bogoliubov quasiparticle picture.Comment: 4 pages, 3 figures, please take postscript version for the best version of Fig

    Enhancing capacity of coherent optical information storage and transfer in a Bose-Einstein condensate

    Full text link
    Coherent optical information storage capacity of an atomic Bose-Einstein condensate is examined. Theory of slow light propagation in atomic clouds is generalized to short pulse regime by taking into account group velocity dispersion. It is shown that the number of stored pulses in the condensate can be optimized for a particular coupling laser power, temperature and interatomic interaction strength. Analytical results are derived for semi-ideal model of the condensate using effective uniform density zone approximation. Detailed numerical simulations are also performed. It is found that axial density profile of the condensate protects the pulse against the group velocity dispersion. Furthermore, taking into account finite radial size of the condensate, multi-mode light propagation in atomic Bose-Einstein condensate is investigated. The number of modes that can be supported by a condensate is found. Single mode condition is determined as a function of experimentally accessible parameters including trap size, temperature, condensate number density and scattering length. Quantum coherent atom-light interaction schemes are proposed for enhancing multi-mode light propagation effects.Comment: 12pages. Laser Physics, in pres

    Direct, Non-Destructive Imaging of Magnetization in a Spin-1 Bose Gas

    Full text link
    Polarization-dependent phase-contrast imaging is used to spatially resolve the magnetization of an optically trapped ultracold gas. This probe is applied to Larmor precession of degenerate and nondegenerate spin-1 87^{87}Rb gases. Transverse magnetization of the Bose-Einstein condensate persists for the condensate lifetime, with a spatial response to magnetic field inhomogeneities consistent with a mean-field model of interactions. Rotational symmetry implies that the Larmor frequency of a spinor condensate be density-independent, and thus suitable for precise magnetometry with high spatial resolution. In comparison, the magnetization of the noncondensed gas decoheres rapidly.Comment: 4 pages, 4 figure

    Bose-enhanced chemistry: Amplification of selectivity in the dissociation of molecular Bose-Einstein condensates

    Full text link
    We study the photodissociation chemistry of a quantum degenerate gas of bosonic triatomic ABCABC molecules, assuming two open rearrangement channels (AB+CAB+C or A+BCA+BC). The equations of motion are equivalent to those of a parametric multimode laser, resulting in an exponential buildup of macroscopic mode populations. By exponentially amplifying a small differential in the single-particle rate-coefficients, Bose stimulation leads to a nearly complete selectivity of the collective NN-body process, indicating a novel type of ultra-selective quantum degenerate chemistry.Comment: 5 pages, 3 figure

    Universal Equation for Efimov States

    Full text link
    Efimov states are a sequence of shallow 3-body bound states that arise when the 2-body scattering length is large. Efimov showed that the binding energies of these states can be calculated in terms of the scattering length and a 3-body parameter by solving a transcendental equation involving a universal function of one variable. We calculate this universal function using effective field theory and use it to describe the three-body system of 4He atoms. We also extend Efimov's theory to include the effects of deep 2-body bound states, which give widths to the Efimov states.Comment: 8 pages, revtex4, 2 ps figures, table with numerical values of universal function adde

    Ground State Energy of the One-Component Charged Bose Gas

    Full text link
    The model considered here is the `jellium' model in which there is a uniform, fixed background with charge density eρ-e\rho in a large volume VV and in which N=ρVN=\rho V particles of electric charge +e+e and mass mm move --- the whole system being neutral. In 1961 Foldy used Bogolubov's 1947 method to investigate the ground state energy of this system for bosonic particles in the large ρ\rho limit. He found that the energy per particle is 0.402rs3/4me4/2-0.402 r_s^{-3/4} {me^4}/{\hbar^2} in this limit, where rs=(3/4πρ)1/3e2m/2r_s=(3/4\pi \rho)^{1/3}e^2m/\hbar^2. Here we prove that this formula is correct, thereby validating, for the first time, at least one aspect of Bogolubov's pairing theory of the Bose gasComment: 38 pages latex. Typos corrected.Lemma 6.2 change
    corecore