2,345 research outputs found

    Surge current and electron swarm tunnel tests of thermal blanket and ground strap materials

    Get PDF
    The results are described of a series of current conduction tests with a thermal control blanket to which grounding straps have been attached. The material and the ground strap attachment procedure are described. The current conduction tests consisted of a surge current examination of the ground strap and a dilute flow, energetic electron deposition and transport through the bulk of the insulating film of this thermal blanket material. Both of these test procedures were used previously with thermal control blanket materials

    Operation of high power converters in parallel

    Get PDF
    High power converters that are used in space power subsystems are limited in power handling capability due to component and thermal limitations. For applications, such as Space Station Freedom, where multi-kilowatts of power must be delivered to user loads, parallel operation of converters becomes an attractive option when considering overall power subsystem topologies. TRW developed three different unequal power sharing approaches for parallel operation of converters. These approaches, known as droop, master-slave, and proportional adjustment, are discussed and test results are presented

    Predicting and verifying transition strengths from weakly bound molecules

    Full text link
    We investigated transition strengths from ultracold weakly bound 41K87Rb molecules produced via the photoassociation of laser-cooled atoms. An accurate potential energy curve of the excited state (3)1Sigma+ was constructed by carrying out direct potential fit analysis of rotational spectra obtained via depletion spectroscopy. Vibrational energies and rotational constants extracted from the depletion spectra of v'=41-50 levels were combined with the results of the previous spectroscopic study, and they were used for modifying an ab initio potential. An accuracy of 0.14% in vibrational level spacing and 0.3% in rotational constants was sufficient to predict the large observed variation in transition strengths among the vibrational levels. Our results show that transition strengths from weakly bound molecules are a good measure of the accuracy of an excited state potential.Comment: 7 pages, 7 figure

    Coherent transfer of photoassociated molecules into the rovibrational ground state

    Full text link
    We report on the direct conversion of laser-cooled 41K and 87Rb atoms into ultracold 41K87Rb molecules in the rovibrational ground state via photoassociation followed by stimulated Raman adiabatic passage. High-resolution spectroscopy based on the coherent transfer revealed the hyperfine structure of weakly bound molecules in an unexplored region. Our results show that a rovibrationally pure sample of ultracold ground-state molecules is achieved via the all-optical association of laser-cooled atoms, opening possibilities to coherently manipulate a wide variety of molecules.Comment: 4 pages, 4 figure

    Experimental observation of the Bogoliubov transformation for a Bose-Einstein condensed gas

    Full text link
    Phonons with wavevector q/q/\hbar were optically imprinted into a Bose-Einstein condensate. Their momentum distribution was analyzed using Bragg spectroscopy with a high momentum transfer. The wavefunction of the phonons was shown to be a superposition of +q and -q free particle momentum states, in agreement with the Bogoliubov quasiparticle picture.Comment: 4 pages, 3 figures, please take postscript version for the best version of Fig

    Direct, Non-Destructive Imaging of Magnetization in a Spin-1 Bose Gas

    Full text link
    Polarization-dependent phase-contrast imaging is used to spatially resolve the magnetization of an optically trapped ultracold gas. This probe is applied to Larmor precession of degenerate and nondegenerate spin-1 87^{87}Rb gases. Transverse magnetization of the Bose-Einstein condensate persists for the condensate lifetime, with a spatial response to magnetic field inhomogeneities consistent with a mean-field model of interactions. Rotational symmetry implies that the Larmor frequency of a spinor condensate be density-independent, and thus suitable for precise magnetometry with high spatial resolution. In comparison, the magnetization of the noncondensed gas decoheres rapidly.Comment: 4 pages, 4 figure

    Generating entangled atom-photon pairs from Bose-Einstein condensates

    Get PDF
    We propose using spontaneous Raman scattering from an optically driven Bose-Einstein condensate as a source of atom-photon pairs whose internal states are maximally entangled. Generating entanglement between a particle which is easily transmitted (the photon) and one which is easily trapped and coherently manipulated (an ultracold atom) will prove useful for a variety of quantum-information related applications. We analyze the type of entangled states generated by spontaneous Raman scattering and construct a geometry which results in maximum entanglement

    Self-Binding Transition in Bose Condensates with Laser-Induced ``Gravitation''

    Get PDF
    In our recent publication (D. O'Dell, et al, Phys. Rev. Lett. 84, 5687 (2000)) we proposed a scheme for electromagnetically generating a self-bound Bose-Einstein condensate with 1/r attractive interactions: the analog of a Bose star. Here we focus upon the conditions neccessary to observe the transition from external trapping to self-binding. This transition becomes manifest in a sharp reduction of the condensate radius and its dependence on the laser intensity rather that the trap potential.Comment: 5 pages, 2 figures: slightly enhanced text: more explanatio

    Bose-enhanced chemistry: Amplification of selectivity in the dissociation of molecular Bose-Einstein condensates

    Full text link
    We study the photodissociation chemistry of a quantum degenerate gas of bosonic triatomic ABCABC molecules, assuming two open rearrangement channels (AB+CAB+C or A+BCA+BC). The equations of motion are equivalent to those of a parametric multimode laser, resulting in an exponential buildup of macroscopic mode populations. By exponentially amplifying a small differential in the single-particle rate-coefficients, Bose stimulation leads to a nearly complete selectivity of the collective NN-body process, indicating a novel type of ultra-selective quantum degenerate chemistry.Comment: 5 pages, 3 figure

    Limitations of light delay and storage times in EIT experiments with condensates

    Full text link
    We investigate the limitations arising from atomic collisions on the storage and delay times of probe pulses in EIT experiments. We find that the atomic collisions can be described by an effective decay rate that limits storage and delay times. We calculate the momentum and temperature dependence of the decay rate and find that it is necessary to excite atoms at a particular momentum depending on temperature and spacing of the energy levels involved in order to minimize the decoherence effects of atomic collisions.Comment: 4 pages RevTeX, 4 figures. Send correspondence to [email protected]
    corecore