36,991 research outputs found
Induced top Yukawa coupling and suppressed Higgs mass parameters
In the scenarios with heavy top squarks, mass parameters of the Higgs field
must be fine-tuned due to a large logarithmic correction to the soft scalar
mass. We consider a new possibility that the top Yukawa coupling is small above
TeV scale. The large top mass is induced from strong Yukawa interaction of the
Higgs with another gauge sector, in which supersymmetry breaking parameters are
given to be small. Then it is found that the logarithmic correction to the
Higgs soft scalar mass is suppressed in spite of the strong coupling and the
fine-tuning is ameliorated. We propose an explicit model coupled to a
superconformal gauge theory which realizes the above situation.Comment: RevTeX4 style, 10 pages, 3 figure
Decay in the Nambu-Jona-Lasinio Model
We study the decays using the version of
the Nambu-Jona-Lasinio model with the effective nonleptonic weak
interaction. The amplitude is in reasonable agreement with
experimental data. On the other hand, the calculated
amplitudes strongly depend on the mass of the low-lying scalar-isoscalar
meson, and therefore give a strong constraint on the parameters of the
model.Comment: 10 pages, 3 Postscript figures, Talk given at YITP Workshp: From
Hadronic Matter to Quark Matter: Evolving View of Hadronic Matter, Kyoto,
Japan, Oct. 30-Nov. 1, 1994, to be published in Prog. Theor. Phys. Supp
Doubly magic nuclei from Lattice QCD forces at 469 MeV/c
We perform ab initio self-consistent Green's function calculations of the
closed shell nuclei He, O and Ca, based on
two-nucleon potentials derived from Lattice QCD simulations, in the flavor
SU(3) limit and at the pseudo-scalar meson mass of 469~MeV/c. The
nucleon-nucleon interaction is obtained using the HAL QCD method and its
short-distance repulsion is treated by means of ladder resummations outside the
model space. Our results show that this approach diagonalises ultraviolet
degrees of freedom correctly. Therefore, ground state energies can be obtained
from infrared extrapolations even for the relatively hard potentials of HAL
QCD. Comparing to previous Brueckner Hartree-Fock calculations, the total
binding energies are sensibly improved by the full account of many-body
correlations. The results suggest an interesting possible behaviour in which
nuclei are unbound at very large pion masses and islands of stability appear at
first around the traditional doubly-magic numbers when the pion mass is lowered
toward its physical value. The calculated one-nucleon spectral distributions
are qualitatively close to those of real nuclei even for the pseudo-scalar
meson mass considered here.Comment: 7 pages, 4 figures, RIKEN-QHP-286, RIKEN-iTHEMS-Report-1
An x-ray detector using PIN photodiodes for the axion helioscope
An x-ray detector for a solar axion search was developed. The detector is
operated at 60K in a cryostat of a superconducting magnet. Special care was
paid to microphonic noise immunity and mechanical structure against thermal
contraction. The detector consists of an array of PIN photodiodes and tailor
made preamplifiers. The size of each PIN photodiode is $11\times 11\times 0.5\
{\rm mm^3}$ and 16 pieces are used for the detector. The detector consists of
two parts, the front-end part being operated at a temperature of 60K and the
main part in room temperature. Under these circumstances, the detector achieved
1.0 keV resolution in FWHM, 2.5 keV threshold and 6\times 10^{-5} counts
sec^{-1} keV^{-1} cm^{-2} background level.Comment: 8 pages, 5 figures, submitted to Nucl. Instr. Meth.
Geometric Bremsstrahlung in the Early Universe
We discuss photon emission from particles decelerlated by the cosmic
expansion. This can be interpretated as a kind of bremsstrahlung induced by the
Universe geometry. In the high momentum limit its transition probability does
not depend on detailed behavior of the expansion.Comment: 20 pages, No figure
Celebrating 70: An Interview with Don Berry
Donald (Don) Arthur Berry, born May 26, 1940 in Southbridge, Massachusetts,
earned his A.B. degree in mathematics from Dartmouth College and his M.A. and
Ph.D. in statistics from Yale University. He served first on the faculty at the
University of Minnesota and subsequently held endowed chair positions at Duke
University and The University of Texas M.D. Anderson Center. At the time of the
interview he served as Head of the Division of Quantitative Sciences, and
Chairman and Professor of the Department of Biostatistics at UT M.D. Anderson
Center.Comment: Published in at http://dx.doi.org/10.1214/11-STS366 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org
- …
