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Abstract

We discuss photon emission from particles decelerlated by the cos-

mic expansion. Its transition probability does not depend on de-

tailed behavior of the expansion and possesses a new-type conformal

anomaly. Moreover the process forces gravitinos with helicity 1/2 to

decay during the epoch when they are relativistic.



1 Introduction

Particles in the expanding Robertson-Walker Universe are decelerated

in the comoving frame. Ignoring backreaction, the particles obey the geodesic

equation and lose their physical momentum Pphys like

Pphys =
Pconf

a
! 0; (1)

where Pconf is a conserved conformal momentum and a is a scale factor grow-

ing in time. In general the particles in deceleration can emanate radiation, or

some massless particles. We call this process geometrobremsstrahlung1 due

to the cosmic expansion.

Many analyses on phenomena in the early Universe have been performed

so far using results of high energy particle physics and proposed a lot of in-

teresting features of the Universe[1]. However they are based on calculations

of transition matrices in the at spacetime, emphasizing the fact that rates

of interactions often argued are much larger than the Hubble parameter, and

no attention seems to be paid to the geometrobremsstrahlung process that

really gives no contribution in the at spacetime.

We shall argue in this paper that the geometrobremsstrahlung may play

impotant roles in the early Universe. In section 2, emission of electromagnetic

wave from a charged particle in the expanding Universe is discussed classi-

cal mechanically, taking account of backreaction. It is shown that classical

emission rate may not be simply ignored and the damping time nearly equals

to expansion time. In section 3, the photon emission from charged particles

is treated quantum mechanically. High momentum limit of the transition

probability can be obtained analytically and we also point out that there is a

new type of conformal anomaly, where massless limit should be treated care-

fully and is nontrivial. In section 4, we apply the geometrobremsstrahlung

to gravitino decay processes in the early Universe. A prominent enhance-

ment appears in the decay probablility of gravitino especially with helicity

1/2 into a photon and a photino. On the other hand, the inverse geometro-

bremsstrahlung processes are highly suppressed by the thermal nature of the

photons and photinos. By virtue of this mechanism, the helicity 1/2 compo-

1
This process is also called by DeWitt and Brehme electro-gravitic bremsstrahlung in

ref [3].
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nent of gravitino produced at the temperature higher than 1010� 1010:5 GeV

can be washed out during the epoch when the gravitino is relativistic.

In this paper, we adopt the natural units, the light velocity c = 1 and the

Planck constant �h = 1. Signature of metric is taken as (+;�;�;�).

2 Classical Geometrobremsstrahlung in the

early Universe

The radiation reaction has been neglected in the study of the early Uni-

verse. However particles are deaccelerated due to the cosmic expansion and

thus they will emit the radiation. If the damping time due to the radiation

reaction is comparable to the expansion time, the e�ect of the radiation reac-

tion may not be simply neglected. We shall study in detail this phenomenon

in the case of classical charged particles.

The study of the radiation reaction for a charged particle has a long his-

tory. The �rst relativistic calculation was done by Dirac[2]. His calculation

has been generalized by DeWitt-Brehme[3] for the motion in gravitational

�eld. They have shown that bremsstrahung induced by the spacetime curva-

ture which we call geometrobremsstrahlung occured in addition to the usual

radiation damping. The e�ect is nonlocal in general which is caused by the

so-called tail term in the Green function. It was Hobbs[4] who corrected

the result of De Witt-Brehme and pointed out that the tail term vanishes

identically in the case of the conformally at spacetimes. His equation of

motion for a particle with 4 velocity u�, mass m, charge e without external

electromagnetic �eld may be written in the following form in conformally at

spacetime.

m
Du�

D�
=

2e2

3

 
D2u�

D� 2
+ u�

�
Du

D�

�2!
+
2e2

3
(
;�� � 
;�
;�)

�
g��u� � u�u�u�

�
(2)

whereD=D� is the absolute derivative along the worldline of the particle with

� the proper time and the exp(2
) is the conformal factor, g�� = e2
��� with

��� the at Minkowskii metric.

Here we are interested in the radiation reaction induced by the cosmic

expansion in the early Universe and thus we will restrict ourselves to the case

where the conformal factor depends only on the time variable. We shall take
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a di�erent approach from Hobbs and evaluate explicitly the damping time

scale due to the geometrobremsstrahlung in the early Universe.

We shall take the standard form for the action of a charged particle with

mass m and charge e in the gravitational �eld,

S = �m
Z q

g�� _x� _x�d� � e

Z
A� _x

�d� � 1

4

Z
d4x
p�gg��g��F��F��:

The dot denotes the derivative with respect to the proper time � . The

equation of motion derived from the above action may be written as follows.

m
Du�

D�
= m

 
du�

d�
+ �

�
��u

�u�
!
= eF ��u�:

Since we are interested in the early Universe, we may neglect the spatial

curvature and thus take the spatially at Robertson-Walker model as our

background geometry,

ds2 = a2(�)(d�2 � d~x 2) = dt2 � a2d~x 2:

Since the metric is conformally at, it is convenient to work in the con-

formally related at spacetime. De�ning the conformally related proper time

d�f = a�1d� , we shall de�ne the conformally related 4 velocity

~u� =
dx�

d�f
:

Then the equation of motion may be written as follows.

m
Du�

D�
= ma�2

 
d~u�

d�f
+
a0

a

d�

d�f
~u� � a0

a
�
�
0

!
= ea�3���F��~u

�:

where the prime denotes the derivative with respect to the conformal time

�. By using the self �eld of the particle in the right hand side of the above

equation, we shall obtain the radiation reaction force.

Before calculating the reaction force explicitely, let us compare the timescale

between the radiation damping and the cosmic expansion to see the impor-

tance of the radiation reaction in the early Universe. The damping time may

be roughly evaluated as follows.
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1

tr
�
����� 1

Econf

dEconf

ad�

����� � 1

pconf

2

3a
e2
 
d~u

d�

!2

� 2

3
e2
pphysH

2

m2

where

H =
1

a

da

dt

is the Hubble parameter, pconf is the conformal momentum and we have used

the fact that the physical momentum pphys = m~u = pconf=a decays as a�1 if

the radiation reaction is neglected. Thus the ratio between the Hubble time

texp = H�1 and the damping time is

texp

tr
� 2e2

3m2
pphysH:

This ratio is much larger than the unity for a relativistic particle at su�ciently

early times in the Universe. Thus the radiation reaction may not be simply

ignored and might play an important role in the early Universe.

For the calculation of the reaction force, we shall need the �eld equation

derived from the above action,

������F��;� = e

Z
d�f�

4(x� x(�f ))~u
�:

Taking the following non-covariant gauge

���A�;� = 0;

we arrive at the �eld equation which has the same form with that in the at

spacetime,

���A�
;�� = e

Z
d�f ~u

��4(x� x(�f )):

Then the calculation by Dirac [2] applies here and we obtain the standard

expression for the reaction force in the at spacetime,

F �
react = e ���F��~u

� =
2

3
e2

2
4d2~u�
d�f

2 +

 
d~u

d�f

!2

~u�

3
5 :

It can be shown by a direct calculation that our expression of the equation

of motion with radiation reaction in the conformally related at spacetime

coincides with eqn(2) when transformed back to the original physical frame.
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In order to see the e�ect of the radiation reaction explicitly, we shall

forcus our attention to an 1-dimensional motion. Then the above equation

is simpli�ed as

d

d�f
(am~u) =

2

3
e2

2
4 d2~u
d�f

2 �
~u

1 + ~u2

 
d~u

d�f

!2
3
5 :

Without the radiation reaction, the conformal momentum pconf = am~u is

conserved as expected.

Now we shall rewrite the above equation using the conformal momentum

pconf and the background time dt = ad�,

d2pconf

dt2
=

0
@H +

3m

2e2
q
1 + (pphys=m)2

1
A dpconf

dt
+
dH

dt
pconf : (3)

Notice that there will be no geomotrobremsstrahlung in the case of de Sitter

expansion, namely H = const. We shall be interested in the relativistic case

in the early universe, namely

pphys � 3m2

2e2H
; m:

Then the second term in the coe�cient of dpconf=dt in eqn(3) is negligible.

Thus when the particle is relativistic, its evolution is governed by the reaction

force only and the Hubble time will be the only available time scale in this

situation. In fact, the solution in this case may be written as follows.

pconf (t) = p0

 
1�H(t0)

Z t

t0

dt0 exp

 
�
Z t0

t0

H(x)dx

!!
exp

�Z t

t0

H(t0)dt0
�

where we have taken the following initial conditions;

pconf (t = t0) = p0;
dpconf

dt
(t = t0) = 0

The second condition expresses the fact that the reaction force is absent

at the initial time. The solution shows that the momentum decays in the

Hubble time. Thus this process should not be simply neglected. However

the above conclusion is obtained as a classical e�ect and it is not clear if the
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geometrobremsstrahlung is still e�ective when the quantum e�ect is taken

into account. We shall discuss quantum geometrobremsstrahlung in the next

section.

3 Universality and Conformal Anomaly in Pho-

ton Emission

As argued in the section 2, the geometrobremsstrahlung may work clas-

sical mechanically in the expanding Universe, interacting with the spatially

uniform curvature. Meanwhile whether this notable process survives or not

after taking quantum e�ects into account is nontrivial and this question shall

be discussed next.

To de�ne well-behaving quantum amplitudes in the expanding Universe,

we consider spacetimes with Minkowskian in and out regions. The way of

expansion is chosen arbitrary. The scale factor is described as

a(�) = C(��) (4)

where � is the conformal time, ��1 is a constant exhibiting typical time scale

of expansion. The function C(x) in eqn(4) is arbitray except the following

constraints,

C(�1) = b; (5)

C(1) = 1; (6)

C(x) > 0; (7)

where b is some positive constant smaller than 1.

Consider �rst photon emission in the massive scalar QED with conformal

coupling to the background curvature. The action reads

S =

Z
d4x

p�g ((r� + ieA�)�
�(r� � ieA�)�

+(
1

6
R�m2)��� � 1

4
F ��F��

�
:

The photon emission process is prohibited in the at spacetime by energy-

momentum conservation. However in the expanding spacetimes the energy
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conservation law gets broken and the transition can take place. The transi-

tion amplitude is given in the lowest order pertubation such that

Amp = �ie
Z
d4x
p�gi

�
��

fr��i �r���

f�i

�
A�

� (8)

where �i(�f ) is initial(�nal) mode function of massive charged scalar �eld

and A�

� is the �nal mode function of electromagnetic �eld. The scalar mode

functions satisfy �
r2 +m2 � 1

6
R

�
� = 0: (9)

Rede�ning the �eld ~� = � � a(�), the wave equation becomes the Klein-

Gordon equation with a time-dependent mass,�
@2 +m2a(�)2

�
~� = 0: (10)

Here we introduce gin~pi (�) and gout~pf
(�) satisfying a Schr�odinger-type equation,"

� d2

d�2
�m2a(�)2

#
g~p = ~p 2g~p; (11)

with the boundary conditions in the asymptotic in and out regions as

gin~pi (�) !
exp

�
�i�

q
~p 2
i +m2b2

�
r
(2�)32

q
~p 2
i +m2b2

(� � �1);

gout~pf
(�) !

exp
�
�i�

q
~p 2
f +m2

�
r
(2�)32

q
~p 2
f +m2

(� � 1):

They also satisfy the following normalization condition.

i
�
g�~pg

0

~p � g0
�

~pg~p
�
=

1

(2�)3
; (12)

where the prime denotes the derivative with respect to �. Then the mode

functions can be expressed as

��

f =
1

a
~��

f =
1

a
e�i~pf �~xgout�~pf

;

�i =
1

a
~�i =

1

a
ei~pi�~xgin~pI :
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The electromagnetic �nal mode function satis�es the Maxwell equation

in curved spacetime,

r�(r�A
�

� �r�A
�

�) = 0: (13)

Notice that in 4-dimensional conformally at spacetimes this eqn(13) can be

reduced into the same form of that in the at spacetime,

@�(@�A
�

� � @�A
�

�) = 0: (14)

Therefore we get easily the �nal mode functions

A�

� = ���(
~k)
exp

�
ij~kj� � i~k � ~x

�
q
(2�)32j~kj

; (15)

where ��� is a helicity factor. Using the rescaled �eld, the amplitude, eqn(8),

is rewritten as

Amp = �ie
Z
d4xi

�
~��

f@
�~�i � @�~��

f
~�i

�
A�

�: (16)

Because the photon emission lasts only during the epoch of expansion, the

concept of the probability per unit time is ambiguious. So we shall use the

transition probability itself. The transition probability W can be obtained

from the amplitude such that

W =
X

h=L;R

(2�)3

V

Z
d3pfd

3kjAmpj2; (17)

where the summation is performed on the photon helicity and V is the con-

formal volume of the space which is cancelled by the factor (2�)3�(~0) coming

from the conformal momentum conservation in jAmpj2 . After the helicity

summation, the explicit form of W is obtained as follows.

W = (2�)6e2
Z

d3k

(2�)32j~kj
Z
d3pf �(~k + ~pf � ~pi)

�
"
(~pf + ~pi)

2

����
Z
d� eij

~kj�gout�~pf
gin~pi

����2 �
����
Z
d� eij

~kj�(gout�~pf
gin~pi

0 � gout�~pf

0

gin~pi )

����2
#
:

By virtue of the Wronskian relation;

d

d�

�
gout�~pf

gin~pi
0 � gout�~pf

0

gin~pi

�
= (~p 2

f � ~p 2
i )g

out�
~pf

gin~pi ; (18)
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the form of W is more simpli�ed such that

W = (2�)3e2
Z

d3k

2j~kj
4

0
@~pi2 � (~k~pi)

2

~k2

1
A ����
Z

1

�1

d� eij
~kj�gout�

~pi�~k
gin~pi

����2 : (19)

To grasp the behavior of W in the j~pij ! 1 limit, we �rst argue a case

with scale factor

a(�) = �(�) + b�(��): (20)

Then the exact mode functions are derived in this case as

gin~pi = �(��)
exp

�
�i�

q
~p 2
i +m2b2

�
r
(2�)32

q
~p 2
i +m2b2

+�(�)
A(~pi) exp

�
�i�

q
~p 2
i +m2

�
+B(~pi) exp

�
i�
q
~p 2
i +m2

�
r
(2�)32

q
~p 2
i +m2b2

; (21)

gout~pf
= �(�)

exp
�
�i�

q
~p 2
f +m2

�
r
(2�)32

q
~p 2
f +m2

+�(��)
A(~pf) exp

�
�i�

q
~p 2
f +m2b2

�
+B(~pf ) exp

�
i�
q
~p 2
f +m2b2

�
r
(2�)32

q
~p 2
f +m2

;

(22)

where

A(~p) =
1

2

 
1 +

s
~p 2 +m2b2

~p 2 +m2

!
;

B(~p) =
1

2

 
1�

s
~p 2 +m2b2

~p 2 +m2

!
:

Substituting eqn(21) and eqn(22) into eqn(19) and taking the high momen-

tum limit, j~pij ! 1, it is shown that the terms proportinal to B, reection

wave terms in the mode functions, do not contribute to W because of the
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damping behavior of B. Notice that taking the high momentum limit, the

energy conservation law almost restores in the following sense.

j~pij � j~kj+ j~pi � ~kj: (23)

Contribution from the region where eqn(23) does not hold is severely sup-

pressed by the energy conservation factor. Using the polar coordinate de-

composition ~pi � ~k = j~pijk cos � with k = j~kj and taking j~pij much larger than

m, it is easily derived that the contribution from the k integral region lying

between j~pij and 1 vanishes. Hence we get

W (j~pij � 1)

=
e2j~pij
2(2�)2

Z
j~pij

j~pij�
dk

k

j~pij � k

Z �

0
d� sin3 �

�
�����
�
k �

q
~p 2
i +m2 +

q
(j~pij � k)2 + 2j~pijk(1 � cos �) +m2

�
�1

�
�
k �

q
~p 2
i +m2b2 +

q
(j~pij � k)2 + 2j~pijk(1� cos �) +m2b2

��1�����
2

:

(24)

We need infra-red cuto� j~pij� in eqn(24) due to the existance of massless

photon. This infra-red divergence is well known one in at spacetime quan-

tum �eld theories with massless particles and it should be cancelled by an

infra-red divergence of the self energy term [5]. The cuto� � is physically

determined by resolving power of soft photon observation. The � integration

in eqn(24) can be straightforwardly calculated. After performing this inte-

gration and taking the high momentum limit j~pij ! 1, the k integration is

simpli�ed and we �nally obtain

W (j~pij ! 1) =
e2

4�2

�
ln
1

�
+ � � 1

� 
1 + b2

1 � b2
ln

1

b2
� 2

!
: (25)

We have taken the helicity sum in eqn(25). It is also possible to evaluate

W (b) independently with a �xed photon helicity. For left and right handed

helicity, each probability is the same, a half of W in eqn(25).

Furthermore we can also obtain the analytic forms of W (b) in the spinor

QED for the case of eqn(20). Because both of the charged fermion and photon
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have degree of helicity freedom, 4 helicity contributions must be considered

separately. The probability in the high momentum limit for 1/2 helicity

fermion decaying into fermion with helicitity hfermion and photon with helic-

ity hphoton is denoted by W (1=2;hfermion; hphoton) and is given for each case

as follows.

W (1=2; 1=2; 1) =
e2

8�2

�
ln
1

�

� 
1 + b2

1 � b2
ln

1

b2
� 2

!
: (26)

W (1=2; 1=2;�1) = e2

8�2

 
ln
1

�
� �2

2
+ 2� � 3

2

! 
1 + b2

1� b2
ln

1

b2
� 2

!
:(27)

W (1=2;�1=2; 1) = e2

8�2

 
1 � b

1 � b2
ln

1

b2

!
: (28)

W (1=2;�1=2;�1) = 0: (29)

No infra-red cuto� � appears in eqn(28) and eqn(29) because spinip of the

fermion enables observers to distinguish the bremsstrahlung from the self

energy process.

There exists a very useful aspect of W in the high momentum limit. It is

supposed that the results eqn(25)�eqn(29) are exact not only for the special
way of the expansion given by eqn(20) but also arbitrary way satisfying

eqn(4) � eqn(7). This implies that W (j~pij ! 1) possesses a remarkable

universality with respect to the ways of the cosmic expansion. This property

may be explained as the Lorentz contraction e�ect from the view point of

the high energy particle. Imagine a particle running in the comoving frame.

Suppose that the Universe begins to expand when the particle passes through

a point A and the Universe ceases to expand when the particle reaches point

B. The particle catches energy from the expansion only while running from A

to B. Taking the high momentum limit, the length between A and B contracts

to zero in the rest frame of the particle. Therefore the particle cannot see

the details of the way how the Universe expands and thus the universality of

W crops up.

To see more quantitatively the universality, we shall discuss the scalar

QED with an adiabatically slow evolution of the scale factor a(�) satisfy-

ing eqn(4) � eqn(7). In the zeroth order adiabatic approximation(WKB
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approximation) the mode functions satisfying eqn(11) is written as

gin~p � gout~p �
exp

h
i~p � ~x� i

R �
0 d�

0

q
~p 2 +m2a(�0)2

i
r
(2�)32

q
~p 2 +m2a(�)2

: (30)

Substituting eqn(30) into eqn(19) and introducing the polar coordinate de-

composition; ~pi � ~k = j~pijk cos �, we get

W � e2j~pij2
2(2�)2

Z
1

j~pij�
dkk

Z �

0
d� sin3 �

�

��������
Z

1

�1

d�
exp

h
ik� � i

R � d�0q~p 2
i +m2a(�0)2 + i

R � d�0!(~pi � ~k; �0)
i

r
!(~pi � ~k; �)

q
~p 2
i +m2a(�)2

��������

2

(31)

where !(~pi � ~k; �) =
q
(j~pij � k)2 + 2j~pijk(1� cos �) +m2a2 and j~pij� is the

inra-red cuto�. Consider the high momentum limit in eqn(31). Since nonva-

nishing contribution to W comes from the integral region where the momen-

tum holds the relation eqn(23) as mentioned before, it is enough to restrict

the momentum region between j~pij and j~pij�. Here it should be searched

which integral region of � contributes, accompanied by inuence from a(�),

to the nonvanishing value of W in eqn(31). Due to eqn(23), only emittion

to nearly forward direction (� � 0) is permitted and especially the integral

region of � sa�sfying

0 � � � O (m=j~pij)
gives the scale factor dependence to the W . Several expansions like

q
~p 2
i +m2a(�0)2 � j~pij+ m2a(�0)2

2j~pij
yield �nally

W � e2j~pij
2(2�)2

Z
j~pij

j~pij�
dk

k

j~pij � k

Z O

�
m

j~pi j

�
0

d� �3

�
�����
Z

1

�1

d� exp

"
�i
Z �

0
d�0

 
m2a(�0)2

2j~pij � m2a(�0)2

2(j~pij � k)
� j~pijk�2)
2(j~pij � k)

!#�����
2
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=
e2

(2�)2

Z 1

�
dy

y

1� y

Z O(1)

0
dzz3

�
������
Z

1

�1

d~� exp

2
4�i Z ~�

0
d~�0

0
@C

 
2�j~pij
m2

~�0
!2

� C(2�j~pij
m2 ~�0)2

1 � y
� yz2

1� y

1
A
3
5
������
2

;

(32)

where we change the integral variables in the following way,

k = j~pijy;
� =

m

j~pijz;

� =
2j~pij
m2

~�:

Note that the function C(
2�j~pij

m2 ~�) in eqn(32) approaches in the high momen-

tum limit to a step function,

C = �(~�) + b �(�~�):

Therefore the value of W for arbitrary adiabatical cosmic expansion satisfy-

ing eqn(4) � eqn(7) must equal to the speci�ed value for eqn(20), and the

universality is surely realized. If we dismiss the adiabatic approximation,

the mode functions have reection wave terms like in eqn(21) and eqn(22).

However amplitude of the reection waves vanishes in the high momentum

limit and the universality are thought to survive.

Here we have a comment on the rate of the geometrobremsstrahlung.

Comparing with the classical results in the section 2, it is noticed from

eqn(25)� eqn(29) that the gravitobremsstrahlung process does not frequently

take place quantum mechanically. This is due to the fact that quantum e�ect

smears position of the classical point particle and dilutes the charge density.

Now it is worth considering the results; eqn(25)�eqn(29) from the con-

formal symmetric point of view. Since the massless limit m ! 0 forces the

speed of the particle to reach the light velocity, the universality with respect

to the way of the cosmic expansion is maintained. In the lowest pertubation

of the QED, the massless limit is shown to be equivalent with the j~pij ! 1
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limit. Therefore again the same results, eqn(25)� eqn(29), come up in the

m ! 0 limit and W really possesses the non-vanishing value. One might

naively expect for the massless case that the amplitude in the conformally

at spacetime vanishes as in the Minkowskian spacetime, by virtue of the

conformal symmetry, guaranteed at least classical mechanically. However

this is not true unless b = 1 as argued above. This is a sort of conformal

anomaly but it emerges in the tree level unlike the usual appearance of the

anomaly due to loop e�ects.

Though the geometrobremsstrahlung in the QED is an interesting phe-

nomenon, unfortunately it is not expected to work e�ciently in the real early

Universe. The reason comes from its circumstance. Charged particles at the

temperature lying between 1016 GeV and 1 eV are strongly interacting with

each other so that they are soaked in a thermal bath. Their quantum co-

herence gets broken in a quite short freestreaming time of the thermal bath

before collision, and the Universe expands only with �a=a � 1 during the

time. The contribution from the span to the probability is

�Prob / e2�b = e2
�t

2t
;

where t is the proper time in the comoving frame and we have used the

explicit form of the scale factor in the radiation dominant Universe,

a / t
1

2 :

Transition probability after a long time T in the thermal bath can be esti-

mated summing up the short span contributions between collisions as

Probthermal / e2
X

collisions

�t

t
= e2 ln

�
to + T

to

�
;

which does not reach unity until today due to its logarithm behavior. Hence

the geometrobremsstrahlung does not occur in the bath. It should be strongly

emphasized that this suppression in the bath appears not only for the particle

in the QED but also any thermal particles of general theories.

4 Gravitino Decay by Geometrobremsstrahlung

As mentioned in the section 3, the geometrobremsstrahlung survives

in quantum �eld thoeries. This result tempts us to imagine that the de-
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celeration induced by the cosmic expasion enhances also rates of some high

energy particle decay. In this section we shall discuss a possibility of the

geometrobremsstrahlung decay of gravitino.

The gravitino is a superpartner of graviton and posseses 3/2 spin. It

interacts with other particles weakly through its coupling suppressed by the

Planck mass. Because the rate of the interaction is smaller than the Hubble

parameter after the Planck epoch, the gravitino in the early Universe is

decoupled from other particles (photon, photino, � � �). The gravitino with

mass of 1� 0:1 TeV will have lifetime of 105 � 108 sec. This longevity of the

gravitino would upset the standard big-bang nucleosynthesis in various ways

[6, 7]. To avoid the disaster, one should require the reheat temperature after

ination is su�ciently low.

Notice that caluculations of the gravitino decay rate so far is based on

the at spacetime approximation, and taking no account of the geometro-

bremsstrahlung decay process.

We shall show that the gravitino decay via geometrobremsstrahlung is

very e�ective, especially for 1/2 helicity components. Before the gravitino

becomes nonrelativisitic, the momentum of the gravitino in the comoving

frame is much larger than its mass m and the Hubble parameter. Therefore

in the region from the time the supersymmetry gets broken till the time

gravitinos are going to be dust matter, it is valid to adopt the high momentum

limit j~pij ! 1 in the section 3. We assume for simplicity that masses of

gravitino and photino degenerate in this section.

The action for free gravitino in the Robertson-Walker spacetime reads

Sgravitino =

Z
d4x
p�g

�
�1

2
����� �	�5�r�	� � 1

4
m�	�[

�; �]	�

�
; (33)

where 	� is the gravitino �eld, majorana fermion �eld with spin 3/2, and

� = e�a
a; (34)

fa; bg = 2�ab; (35)

5 = i0123; (36)

e�a = a(�)�1��a ; ea� = a(�)�a�; (37)

g�� = e�ae
a
�: (38)

Introducing the rescaled gravitino �eld as

~	� = a(�)
1

2	�; (39)
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the action can be rewritten into that in the at spacetime with time-dependent

mass ma(�),

Sgravitino =

Z
d4x

�
�1

2
�abmn �~	a5b@m ~	n � 1

4
ma(�)

�~	a[
a; b]	b

�
: (40)

The action of free photino is given as

Sphotino =

Z
d4x
p�g 1

2

�
��i�r�� �m���

�
; (41)

where � is photino �eld, majorana fermion �eld with spin 1/2. Here using

rescaled photino �eld by
~� = a(�)

3

2�; (42)

the action is transformed into that with mass term ma(�) in the Minkowski

spacetime,

Sphotino =
Z
d4x

1

2

��~�ia@a~��ma(�)
�~�~�
�
: (43)

We shall analyze for example a decaying mode to a photon and a photino.

Interaction term describing the gravitino decay is given as

Sint =

Z
d4x
p�g 1

8iMG

�	�[
�; �]��F��

=

Z
d4x

1

8iMGa(�)

�~	m[
a; b]m~�Fab; (44)

where MG is the Planck mass. The same method in the section 3 yields

the transition probability W (b) of the gravitino decay into a photon and a

photino in the high momentum limit. The following tables show the leading

behaviors, up to factors, of W (b)
M2

G

m2 near b = 0.

TABLE 1 :Decay of Gravitino with helicity 3/2

photon helicity +1 photon helicity -1

photino helicity +1/2 O(1) 6= 0 1=b2

photino helicity -1/2 ln b 0

TABLE 2 :Decay of Gravitino with helicity 1/2
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photon helicity +1 photon helicity -1

photino helicity +1/2 ln b 1=b4

photino helicity -1/2 1=b2 1=b2

A remarkable enhancement appears in the mode in which a gravitino with

helicity 1/2 decays into a photon with helicity -1 and a photino with helicity

1/2 and the probability W (b) behaves as

W 1

2

(b) � O

 �
m

MG

�2! 1

b4
(b � 0): (45)

The decay occurs when W 1

2

(b) � 1. and the radiation dominant Universe

expands like

af

ai
=

1

b
=

�
tf

ti

�1

2

; (46)

where ti(tf) is initial(�nal) proper time in the comoving frame. Therefore we

get

�gb =
1

tf
� m

MG

Hi; (47)

where Hi = 1=ti is the Hubble parameter at the production time of the

gravitino. On the other hand ordinary nongravitational decay process gives

us its rate,

�o �
�
m

MG

�2
m: (48)

Taking the mass m � 1�0:1 TeV, the lifetime 1=�o is estimated as 10
5�108

sec, while the geometrobremsstrahlung process gives much shorter lifetime

1=�gb � 10�13 � 10�11 sec for the production temperature of the gravitino

higher than 1011 � 1010:5GeV. Thus the gravitinos with 1/2 helicity decay

during the epoch when they are relativistic, as opposed to arguments so far

which insist that they decay after becoming dust matter.

The inverse geometrobremsstrahlung processes (photino ! gravitino +

photon, photon ! gravitino + photino ) are highly suppressed due to the

quantum decoherence by the thermal bath. The photons and photinos in

the thermal bath collide frequently with other particles until the Universe

expands enough and the quantum coherence of the particles is lost. By the
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similar argument in the section 3, the decay probability producing gravitino

behaves like

W � O

 
m2

M2
G

!
ln

�
tf

ti

�
; (49)

and the photon and photino in the bath does not decay until today by this

mechanism. Therefore gravitino is produced just by the two-body scatterings

in the bath as usually argued [7]. Thus if an amount of gravitinos from

the vacuum produced by pair creation where energy is typically order of the

Hubble parameter is negligibly small, the 1/2 helicity components of gravitino

produced from the thermal bath at the temperature beyond 1010�1011 GeV

are washed out during the epoch when the gravitino is relativistic. Hence

they do not a�ect to the nucleosysthesis scenario and also not contribute to

the mass density in the Universe today.

The 3/2 helicity components of gravitino have, however, smaller decay

probability than that of 1/2 components. Maximum value of W (b � 0)

appears at a decaying mode into a photino with helicity 1/2 and a photon

with helicity -1, and it behaves like

W 3

2

(b � 0) � O

 �
m

MG

�2! 1

b2
: (50)

Analyzing its lifetime using eqn(50), it is derived assuming no ination that

the 3/2 helicity components of gravitino produced at the Planck epoch decays

until the gravitino becomes nonrelativistic matter. However,unfortunately,

the particles produced later are not washed out by this mechanism. Thus

we conclude that the gravitino problem itself is not solved by the geometro-

bremsstrahlung.
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