21,733 research outputs found

    Photopion Production in Black-Hole Jets and Flat-Spectrum Radio Quasars as PeV Neutrino Sources

    Get PDF
    The IceCube collaboration has reported neutrinos with energies between ~30 TeV and a few PeV that are significantly enhanced over the cosmic-ray induced atmospheric background. Viable high-energy neutrino sources must contain very high-energy and ultra-high energy cosmic rays while efficiently making PeV neutrinos. Gamma-ray Bursts (GRBs) and blazars have been considered as candidate cosmic-ray accelerators. GRBs, including low-luminosity GRBs, can be efficient PeV neutrino emitters for low bulk Lorentz factor outflows, although the photopion production efficiency needs to be tuned to simultaneously explain ultra-high-energy cosmic rays. Photopion production efficiency of cosmic-rays accelerated in the inner jets of flat spectrum radio quasars (FSRQs) is ~1-10% due to interactions with photons of the broad-line region (BLR), whereas BL Lac objects are not effective PeV neutrino sources due to the lack of external radiation fields. Photopion threshold effects with BLR photons suppress neutrino production below ~1 PeV, which imply that neutrinos from other sources would dominate over the diffuse neutrino intensity at sub-PeV energies. Reduction of the >> PeV neutrino flux can be expected when curving cosmic-ray proton distributions are employed. Considering a log-parabolic function to describe the cosmic-ray distribution, we discuss possible implications for particle acceleration in black-hole jets. Our results encourage a search for IceCube PeV neutrino events associated with gamma-ray loud FSRQs using Fermi-LAT data. In our model, as found in our previous work, the neutrino flux is suppressed below 1 PeV, which can be tested with increased IceCube exposure.Comment: 14 pages, 7 figures, added treatments of synchrotron self-absorption and optimal neutrino production in jetted sources; accepted for publication in Journal of High Energy Astrophysic

    Electronic structure of Ca1x_{1-x}Srx_xVO3_3: a tale of two energy-scales

    Get PDF
    We investigate the electronic structure of Ca1x_{1-x}Srx_xVO3_3 using photoemission spectroscopy. Core level spectra establish an electronic phase separation at the surface, leading to distinctly different surface electronic structure compared to the bulk. Analysis of the photoemission spectra of this system allowed us to separate the surface and bulk contributions. These results help us to understand properties related to two vastly differing energy-scales, namely the low energy-scale of thermal excitations (~kBTk_{B}T) and the high-energy scale related to Coulomb and other electronic interactions.Comment: 4 pages and 3 figures. Europhysics Letters (appearing

    Giant Intrinsic Spin and Orbital Hall Effects in Sr2MO4 (M=Ru,Rh,Mo)

    Full text link
    We investigate the intrinsic spin Hall conductivity (SHC) and the d-orbital Hall conductivity (OHC) in metallic d-electron systems, by focusing on the t_{2g}-orbital tight-binding model for Sr2MO4 (M=Ru,Rh,Mo). The conductivities obtained are one or two orders of magnitude larger than predicted values for p-type semiconductors with 5% hole doping. The origin of these giant Hall effects is the ``effective Aharonov-Bohm phase'' that is induced by the d-atomic angular momentum in connection with the spin-orbit interaction and the inter-orbital hopping integrals. The huge SHC and OHC generated by this mechanism are expected to be ubiquitous in multiorbital transition metal complexes, which pens the possibility of realizing spintronics as well as orbitronics devices.Comment: 5 pages, accepted for publication in PR

    Fermi Surface of 3d^1 Perovskite CaVO3 Near the Mott Transition

    Full text link
    We present a detailed de Haas van Alphen effect study of the perovskite CaVO3, offering an unprecedented test of electronic structure calculations in a 3d transition metal oxide. Our experimental and calculated Fermi surfaces are in good agreement -- but only if we ignore large orthorhombic distortions of the cubic perovskite structure. Subtle discrepancies may shed light on an apparent conflict between the low energy properties of CaVO3, which are those of a simple metal, and high energy probes which reveal strong correlations that place CaVO3 on the verge of a metal-insulator transition.Comment: 4 pages, 4 figures (REVTeX

    Multi-State Image Restoration by Transmission of Bit-Decomposed Data

    Get PDF
    We report on the restoration of gray-scale image when it is decomposed into a binary form before transmission. We assume that a gray-scale image expressed by a set of Q-Ising spins is first decomposed into an expression using Ising (binary) spins by means of the threshold division, namely, we produce (Q-1) binary Ising spins from a Q-Ising spin by the function F(\sigma_i - m) = 1 if the input data \sigma_i \in {0,.....,Q-1} is \sigma_i \geq m and 0 otherwise, where m \in {1,....,Q-1} is the threshold value. The effects of noise are different from the case where the raw Q-Ising values are sent. We investigate which is more effective to use the binary data for transmission or to send the raw Q-Ising values. By using the mean-field model, we first analyze the performance of our method quantitatively. Then we obtain the static and dynamical properties of restoration using the bit-decomposed data. In order to investigate what kind of original picture is efficiently restored by our method, the standard image in two dimensions is simulated by the mean-field annealing, and we compare the performance of our method with that using the Q-Ising form. We show that our method is more efficient than the one using the Q-Ising form when the original picture has large parts in which the nearest neighboring pixels take close values.Comment: latex 24 pages using REVTEX, 10 figures, 4 table

    Correlation Inequalities for Quantum Spin Systems with Quenched Centered Disorder

    Full text link
    It is shown that random quantum spin systems with centered disorder satisfy correlation inequalities previously proved (arXiv:cond-mat/0612371) in the classical case. Consequences include monotone approach of pressure and ground state energy to the thermodynamic limit. Signs and bounds on the surface pressures for different boundary conditions are also derived for finite range potentials.Comment: 4 page
    corecore