21 research outputs found

    Online Predictive Optimization Framework for Stochastic Demand-Responsive Transit Services

    Full text link
    This study develops an online predictive optimization framework for dynamically operating a transit service in an area of crowd movements. The proposed framework integrates demand prediction and supply optimization to periodically redesign the service routes based on recently observed demand. To predict demand for the service, we use Quantile Regression to estimate the marginal distribution of movement counts between each pair of serviced locations. The framework then combines these marginals into a joint demand distribution by constructing a Gaussian copula, which captures the structure of correlation between the marginals. For supply optimization, we devise a linear programming model, which simultaneously determines the route structure and the service frequency according to the predicted demand. Importantly, our framework both preserves the uncertainty structure of future demand and leverages this for robust route optimization, while keeping both components decoupled. We evaluate our framework using a real-world case study of autonomous mobility in a university campus in Denmark. The results show that our framework often obtains the ground truth optimal solution, and can outperform conventional methods for route optimization, which do not leverage full predictive distributions.Comment: 34 pages, 12 figures, 5 table

    Modeling Censored Mobility Demand through Quantile Regression Neural Networks

    Full text link
    Shared mobility services require accurate demand models for effective service planning. On one hand, modeling the full probability distribution of demand is advantageous, because the full uncertainty structure preserves valuable information for decision making. On the other hand, demand is often observed through usage of the service itself, so that the observations are censored, as they are inherently limited by available supply. Since the 1980s, various works on Censored Quantile Regression models have shown them to perform well under such conditions, and in the last two decades, several works have proposed to implement them flexibly through Neural Networks (CQRNN). However, apparently no works have yet applied CQRNN in the Transport domain. We address this gap by applying CQRNN to datasets from two shared mobility providers in the Copenhagen metropolitan area in Denmark, as well as common synthetic baseline datasets. The results show that CQRNN can estimate the intended distributions better than both censorship-unaware models and parametric censored models.Comment: 13 pages, 7 figures, 4 table

    Deep Spatio-Temporal Forecasting of Electrical Vehicle Charging Demand

    Full text link
    Electric vehicles can offer a low carbon emission solution to reverse rising emission trends. However, this requires that the energy used to meet the demand is green. To meet this requirement, accurate forecasting of the charging demand is vital. Short and long-term charging demand forecasting will allow for better optimisation of the power grid and future infrastructure expansions. In this paper, we propose to use publicly available data to forecast the electric vehicle charging demand. To model the complex spatial-temporal correlations between charging stations, we argue that Temporal Graph Convolution Models are the most suitable to capture the correlations. The proposed Temporal Graph Convolutional Networks provide the most accurate forecasts for short and long-term forecasting compared with other forecasting methods

    Estimating Latent Demand of Shared Mobility through Censored Gaussian Processes

    Full text link
    Transport demand is highly dependent on supply, especially for shared transport services where availability is often limited. As observed demand cannot be higher than available supply, historical transport data typically represents a biased, or censored, version of the true underlying demand pattern. Without explicitly accounting for this inherent distinction, predictive models of demand would necessarily represent a biased version of true demand, thus less effectively predicting the needs of service users. To counter this problem, we propose a general method for censorship-aware demand modeling, for which we devise a censored likelihood function. We apply this method to the task of shared mobility demand prediction by incorporating the censored likelihood within a Gaussian Process model, which can flexibly approximate arbitrary functional forms. Experiments on artificial and real-world datasets show how taking into account the limiting effect of supply on demand is essential in the process of obtaining an unbiased predictive model of user demand behavior.Comment: 21 pages, 10 figure

    Context-Aware Sensing and Implicit Ground Truth Collection: Building a Foundation for Event Triggered Surveys on Autonomous Shuttles: Artikel

    Get PDF
    The LINC project aims to study interactions between passengers and autonomous vehicles in natural settings at the campus of Technical University of Denmark. To leverage the potential of IoT components in smartphone-based surveying, a system to identify specific spatial, temporal and occupancy contexts relevant for passengers’ experience was proposed as a central data collection strategy in the LINC project. Based on predefined contextual triggers specific questionnaires can be distributed to affected passengers. This work focuses on the data-based discrimination between two fundamental contexts for LINC passengers: be-in and be-out (BIBO) of the vehicle. We present empirical evidence that Bluetooth-low-energy beacons (BLE) have the potential for BIBO independent classification. We compare BLE with other smartphone onboard sensors, such as the global positioning system (GPS) and the accelerometer through: (i) random-forest (RF); (ii) multi-layer perceptron (MLP); and (iii) smartphone native off-the-shelve classifiers. We also perform a sensitivity analysis regarding the impact that faulty BIBO ground-truth has on the performance of the supervised classifiers (i) and (ii). Results show that BLE and GPS could allow reciprocal validation for BIBO passengers’ status. This potential might lift passengers from providing any further validation. We describe the smartphone-sensing platform deployed to gather the dataset used in this work, which involves passengers and autonomous vehicles in a realistic setting

    Machine learning methods for transportation under uncertainty

    No full text
    Motivated by the prevalence of uncertainty and the widespread use of modeling in Transportation, we develop and study effective methods for modeling Transportation under uncertainty. These methods are Machine Learning-based, i.e., they extract patterns from data and leverage them for better modeling. We study them through several case studies, including: quick adaptation of traffic models upon road incidents; estimation of mobility demand from limited observations; and predictive optimization of dynamic Public Transport. Our results yield several positive conclusions about the effectiveness of the studied methods for current and future Transportation.Doctor of Philosoph
    corecore