327 research outputs found

    Ground State Laser Cooling Beyond the Lamb-Dicke Limit

    Full text link
    We propose a laser cooling scheme that allows to cool a single atom confined in a harmonic potential to the trap ground state ∣0>|0>. The scheme assumes strong confinement, where the oscillation frequency in the trap is larger than the effective spontaneous decay width, but is not restricted to the Lamb-Dicke limit, i.e. the size of the trap ground state can be larger than the optical wavelength. This cooling scheme may be useful in the context of quantum computations with ions and Bose-Einstein condensation.Comment: 6 pages, 4 figures, to appear in Europhysics Letter

    Influence of poly-N-acetylglucosamine in the extracellular matrix on N-chlorotaurine mediated killing of Staphylococcus epidermidis

    Get PDF
    N–chlorotaurine (NCT) has recently been shown to have bactericidal activity against bacterial biofilm on metal discs (Coraca-Huber et al., 2014). In a biofilm, Staphylococcus epidermidis polymerizes poly-N-acetylglucosamine (PNAG) to form an extracellular matrix (ECM). Pseudomonas aeruginosa does not express this PNAG and has been shown to be highly susceptible to NCT. We compared the action of NCT on S. epidermidis 1457, a PNAG positive strain (SE1457) and S. epidermidis 1457- M10 an isogenic PNAG negative mutant (SE1457 M10). NCT-mediated killing was more effective and quicker on the PNAG negative strain SE1457 M10. Bacteria hidden in biofilms for prolonged periods of time were generally more susceptible than freshly formed biofilms. The differences in NCT-mediated killing might not be direct effects since NCT did not react with the monomeric N-acetylglucosamine, but might be explained by denser growth in the PNAG-containing biofilm produced by the wild type strain, which results in delayed penetration of NCT. The higher susceptibility of older biofilms to NCTmediated killing could be explained by more pronounced 3D architecture and subsequent larger surface area for interactions with NCT

    B-physics with ATLAS and CMS

    Get PDF
    Overview talk of the B-physics program for the ATLAS and CMS collaboration

    Bio-char post-processing – thermochemical activation of gasification carbon

    Get PDF
    Please click Additional Files below to see the full abstrac

    Comprehensive characterization of the prostate tumor microenvironment identifies CXCR4/CXCL12 crosstalk as a novel antiangiogenic therapeutic target in prostate cancer

    Get PDF
    Background: Crosstalk between neoplastic and stromal cells fosters prostate cancer (PCa) progression and dissemination. Insight in cell-to-cell communication networks provides new therapeutic avenues to mold processes that contribute to PCa tumor microenvironment (TME) alterations. Here we performed a detailed characterization of PCa tumor endothelial cells (TEC) to delineate intercellular crosstalk between TEC and the PCa TME. Methods: TEC isolated from 67 fresh radical prostatectomy (RP) specimens underwent multi-omic ex vivo characterization as well as orthogonal validation of both TEC functions and key markers by immunohistochemistry (IHC) and immunofluorescence (IF). To identify cell-cell interaction targets in TEC, we performed single-cell RNA sequencing (scRNA-seq) in four PCa patients who underwent a RP to catalogue cellular TME composition. Targets were cross-validated using IHC, publicly available datasets, cell culture expriments as well as a PCa xenograft mouse model. Results: Compared to adjacent normal endothelial cells (NEC) bulk RNA-seq analysis revealed upregulation of genes associated with tumor vasculature, collagen modification and extracellular matrix remodeling in TEC. PTGIR, PLAC9, CXCL12 and VDR were identified as TEC markers and confirmed by IF and IHC in an independent patient cohort. By scRNA-seq we identified 27 cell (sub)types, including endothelial cells (EC) with arterial, venous and immature signatures, as well as angiogenic tip EC. A focused molecular analysis revealed that arterial TEC displayed highest CXCL12 mRNA expression levels when compared to all other TME cell (sub)populations and showed a negative prognostic role. Receptor-ligand interaction analysis predicted interactions between arterial TEC derived CXCL12 and its cognate receptor CXCR4 on angiogenic tip EC. CXCL12 was in vitro and in vivo validated as actionable TEC target by highlighting the vessel number- and density- reducing activity of the CXCR4-inhibitor AMD3100 in murine PCa as well as by inhibition of TEC proliferation and migration in vitro. Conclusions: Overall, our comprehensive analysis identified novel PCa TEC targets and highlights CXCR4/CXCL12 interaction as a potential novel target to interfere with tumor angiogenesis in PCa

    Saint or Sinner?: A Reconsideration of the Career of Prince Alexandre de Merode, Chair of the International Olympic Committee’s Medical Commission, 1967-2002

    Get PDF
    This article explores the role of Prince Alexandre de Merode in heading the IOC’s fight against drugs from the 1960s to 2002. History has not served de Merode very well. He has been presented in simplistic ways that emerge from context rather than evidence – as either a saint or a sinner. IOC-sanctioned accounts cast him in the mould of the saint: a moral and intelligent man who saved sports from doping. In contrast, sports academics have tended to portray him as a sinner: an ineffectual leader who did not develop either the testing systems or the punishments required to prevent doping and who deliberately concealed evidence of high-profile doping cases. This article assesses both representations before presenting information to support a richer and more complicated interpretation

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
    • 

    corecore