5 research outputs found

    Influence of sex on the age‐related adaptations of neuromuscular function and motor unit properties in elite masters athletes

    Get PDF
    Motor unit (MU) remodelling acts to minimise loss of muscle fibres following denervation in older age, which may be more successful in masters athletes. Evidence suggests performance and neuromuscular function decline with age in this population, although the majority of studies have focused on males, with little available data on female athletes. Functional assessments of strength, balance and motor control were performed in 30 masters athletes (16 male) aged 44–83 years. Intramuscular needle electrodes were used to sample individual motor unit potentials (MUPs) and near‐fibre MUPs in the tibialis anterior (TA) during isometric contractions at 25% maximum voluntary contraction, and used to determine discharge characteristics (firing rate, variability) and biomarkers of peripheral MU remodelling (MUP size, complexity, stability). Multilevel mixed‐effects linear regression models examined effects of age and sex. All aspects of neuromuscular function deteriorated with age (P < 0.05) with no age × sex interactions, although males were stronger (P < 0.001). Indicators of MU remodelling also progressively increased with age to a similar extent in both sexes (P < 0.05), whilst MU firing rate progressively decreased with age in females (p = 0.029), with a non‐significant increase in males (p = 0.092). Masters athletes exhibit age‐related declines in neuromuscular function that are largely equal across males and females. Notably, they also display features of MU remodelling with advancing age, probably acting to reduce muscle fibre loss. The age trajectory of MU firing rate assessed at a single contraction level differed between sexes, which may reflect a greater tendency for females to develop a slower muscle phenotype

    Atrophy resistant vs. atrophy susceptible skeletal muscles: "aRaS" as a novel experimental paradigm to study the mechanisms of human disuse atrophy

    Get PDF
    Objective: Disuse atrophy (DA) describes inactivity-induced skeletal muscle loss, through incompletely defined mechanisms. An intriguing observation is that individual muscles exhibit differing degrees of atrophy, despite exhibiting similar anatomical function/locations. We aimed to develop an innovative experimental paradigm to investigate Atrophy Resistant tibialis anterior (TA) and Atrophy Susceptible medial gastrocnemius (MG) muscles (aRaS) with a future view of uncovering central mechanisms. Method: Seven healthy young men (22 ± 1 year) underwent 15 days unilateral leg immobilisation (ULI). Participants had a single leg immobilised using a knee brace and air-boot to fix the leg (75° knee flexion) and ankle in place. Dual-energy X-ray absorptiometry (DXA), MRI and ultrasound scans of the lower leg were taken before and after the immobilisation period to determine changes in muscle mass. Techniques were developed for conchotome and microneedle TA/MG muscle biopsies following immobilisation (both limbs), and preliminary fibre typing analyses was conducted. Results: TA/MG muscles displayed comparable fibre type distribution of predominantly type I fibres (TA 67 ± 7%, MG 63 ± 5%). Following 15 days immobilisation, MG muscle volume (–2.8 ± 1.4%, p < 0.05) and muscle thickness decreased (−12.9 ± 1.6%, p < 0.01), with a positive correlation between changes in muscle volume and thickness (R2 = 0.31, p = 0.038). Importantly, both TA muscle volume and thickness remained unchanged. Conclusion: The use of this unique "aRaS" paradigm provides an effective and convenient means by which to study the mechanistic basis of divergent DA susceptibility in humans, which may facilitate new mechanistic insights, and by extension, mitigation of skeletal muscle atrophy during human DA

    Neuromuscular recruitment strategies of the vastus lateralis according to sex

    Get PDF
    AimDespite males typically exhibiting greater muscle strength and fatigability than females, it remains unclear if there are sex-based differences in neuromuscular recruitment strategies e.g. recruitment and modulation of motor unit firing rate (MU FR) at normalized forces and during progressive increases in force.MethodsThe study includes 29 healthy male and 31 healthy female participants (18-35 years). Intramuscular electromyography (iEMG) was used to record individual motor unit potentials (MUPs) and near-fibre MUPs from the vastus lateralis (VL) during 10% and 25% maximum isometric voluntary contractions (MVC), and spike-triggered averaging was used to obtain motor unit number estimates (MUNE) of the VL.ResultsMales exhibited greater muscle strength (P < .001) and size (P < .001) than females, with no difference in force steadiness at 10% or 25% MVC. Females had 8.4% and 6.5% higher FR at 10% and 25% MVC, respectively (both P < .03), while the MUP area was 33% smaller in females at 10% MVC (P < .02) and 26% smaller at 25% MVC (P = .062). However, both sexes showed similar increases in MU size and FR when moving from low- to mid-level contractions. There were no sex differences in any near-fibre MUP parameters or in MUNE.ConclusionIn the vastus lateralis, females produce muscle force via different neuromuscular recruitment strategies to males which is characterized by smaller MUs discharging at higher rates. However, similar strategies are employed to increase force production from low- to mid-level contractions. These findings of similar proportional increases between sexes support the use of mixed sex cohorts in studies of this nature
    corecore