6,460 research outputs found

    Fluctuation characteristics of the TCV snowflake divertor measured with high speed visible imaging

    Get PDF
    Tangentially viewing fast camera footage of the low-field side snowflake minus divertor in TCV is analysed across a four point scan in which the proximity of the two X-points is varied systematically. The motion of structures observed in the post- processed movie shows two distinct regions of the camera frame exhibiting differing patterns. One type of motion in the outer scrape-off layer remains present throughout the scan whilst the other, apparent in the inner scrape-off layer between the two nulls, becomes increasingly significant as the X-points contract towards one another. The spatial structure of the fluctuations in both regions is shown to conform to the equilibrium magnetic field. When the X-point gap is wide the fluctuations measured in the region between the X-points show a similar structure to the fluctuations observed above the null region, remaining coherent for multiple toroidal turns of the magnetic field and indicating a physical connectivity of the fluctuations between the upstream and downstream regions. When the X-point gap is small the fluctuations in the inner scrape-off layer between the nulls are decorrelated from fluctuations upstream, indicating local production of filamentary structures. The motion of filaments in the inter-null region differs, with filaments showing a dominantly poloidal motion along magnetic flux surfaces when the X-point gap is large, compared to a dominantly radial motion across flux-surfaces when the gap is small. This demonstrates an enhancement to cross-field tranport between the nulls of the TCV low-field-side snowflake minus when the gap between the nulls is small.Comment: Accepted for publication in Plasma Physics and Controlled Fusio

    Cross-code comparison of the edge codes SOLPS-ITER, SOLEDGE2D and UEDGE in modelling a low-power scenario in the DTT

    Get PDF
    As reactor-level nuclear fusion experiments are approaching, a solution to the power exhaust issue in future fusion reactors is still missing. The maximum steady-state heat load that can be exhausted by the present technology is around 10 MW m-2. Different promising strategies aiming at successfully managing the power exhaust in reactor-relevant conditions such that the limit is not exceeded are under investigation, and will be tested in the Divertor Tokamak Test (DTT) experiment. Meanwhile, the design of tokamaks beyond the DTT, e.g. EU-DEMO/ARC, is progressing at a high pace. A strategy to work around the present lack of reactor-relevant data consists of exploiting modelling to reduce the uncertainty in the extrapolation in the design phase. Different simulation tools, with their own capabilities and limitations, can be employed for this purpose. In this work, we compare SOLPS-ITER, SOLEDGE2D and UEDGE, three state-of-the-art edge codes heavily used in power exhaust studies, in modelling the same DTT low-power, pure-deuterium, narrow heat-flux-width scenario. This simplified, although still reactor-relevant, testbed eases the cross-comparison and the interpretation of the code predictions, to identify areas where results differ and develop understanding of the underlying causes. Under the conditions investigated, the codes show encouraging agreement in terms of key parameters at both targets, including peak parallel heat flux (1%-45%), ion temperature (2%-19%), and inner target plasma density (1%-23%) when run with similar input. However, strong disagreement is observed for the remaining quantities, from 30% at outer mid-plane up to a factor 4-5 at the targets. The results primarily reflect limitations of the codes: the SOLPS-ITER plasma mesh not reaching the first wall, SOLEDGE2D not including ion-neutral temperature equilibration, and UEDGE enforcing a common ion-neutral temperature. Potential improvements that could help enhance the accuracy of the code models for future applications are also discussed

    The plasma boundary in Single Helical Axis RFP plasmas

    Full text link
    Single Helical Axis (SHAx) states obtained in high current reversed field pinch (RFP) plasmas display, aside from a dominant mode in the m=1 spectrum, also a dominant m=0 mode, with the same toroidal mode number as the m=1 one. The two modes have a fixed phase relationship. The island chain created by the m=0 mode across the reversal surface gives rise, at shallow reversal of the toroidal field, to an X-point structure which separates the last closed flux surface from the first wall, creating a divertor-like configuration. The plasma-wall interaction is found to be related to the connection length of the field lines intercepting the wall, which displays a pattern modulated by the dominant mode toroidal periodicity. This configuration, which occurs only for shallow toroidal field reversal, could be exploited to realize an island divertor in analogy to stellarators.Comment: 12 pages, 9 figures Submitted to Nuclear Fusio

    Diffractive Dissociation In The Interacting Gluon Model

    Get PDF
    We have extended the Interacting Gluon Model (IGM) to calculate diffractive mass spectra generated in hadronic collisions. We show that it is possible to treat both diffractive and non-diffractive events on the same footing, in terms of gluon-gluon collisions. A systematic analysis of available data is performed. The energy dependence of diffractive mass spectra is addressed. They show a moderate narrowing at increasing energies. Predictions for LHC energies are presented.Comment: 12 pages, latex, 14 figures (PostScript Files included); accepted for publication in Phys. Rev. D (Feb.97

    Cognitive behavioural therapy for adults with dissociative seizures (CODES): a pragmatic, multicentre, randomised controlled trial.

    Get PDF
    BACKGROUND: Dissociative seizures are paroxysmal events resembling epilepsy or syncope with characteristic features that allow them to be distinguished from other medical conditions. We aimed to compare the effectiveness of cognitive behavioural therapy (CBT) plus standardised medical care with standardised medical care alone for the reduction of dissociative seizure frequency. METHODS: In this pragmatic, parallel-arm, multicentre randomised controlled trial, we initially recruited participants at 27 neurology or epilepsy services in England, Scotland, and Wales. Adults (≥18 years) who had dissociative seizures in the previous 8 weeks and no epileptic seizures in the previous 12 months were subsequently randomly assigned (1:1) from 17 liaison or neuropsychiatry services following psychiatric assessment, to receive standardised medical care or CBT plus standardised medical care, using a web-based system. Randomisation was stratified by neuropsychiatry or liaison psychiatry recruitment site. The trial manager, chief investigator, all treating clinicians, and patients were aware of treatment allocation, but outcome data collectors and trial statisticians were unaware of treatment allocation. Patients were followed up 6 months and 12 months after randomisation. The primary outcome was monthly dissociative seizure frequency (ie, frequency in the previous 4 weeks) assessed at 12 months. Secondary outcomes assessed at 12 months were: seizure severity (intensity) and bothersomeness; longest period of seizure freedom in the previous 6 months; complete seizure freedom in the previous 3 months; a greater than 50% reduction in seizure frequency relative to baseline; changes in dissociative seizures (rated by others); health-related quality of life; psychosocial functioning; psychiatric symptoms, psychological distress, and somatic symptom burden; and clinical impression of improvement and satisfaction. p values and statistical significance for outcomes were reported without correction for multiple comparisons as per our protocol. Primary and secondary outcomes were assessed in the intention-to-treat population with multiple imputation for missing observations. This trial is registered with the International Standard Randomised Controlled Trial registry, ISRCTN05681227, and ClinicalTrials.gov, NCT02325544. FINDINGS: Between Jan 16, 2015, and May 31, 2017, we randomly assigned 368 patients to receive CBT plus standardised medical care (n=186) or standardised medical care alone (n=182); of whom 313 had primary outcome data at 12 months (156 [84%] of 186 patients in the CBT plus standardised medical care group and 157 [86%] of 182 patients in the standardised medical care group). At 12 months, no significant difference in monthly dissociative seizure frequency was identified between the groups (median 4 seizures [IQR 0-20] in the CBT plus standardised medical care group vs 7 seizures [1-35] in the standardised medical care group; estimated incidence rate ratio [IRR] 0·78 [95% CI 0·56-1·09]; p=0·144). Dissociative seizures were rated as less bothersome in the CBT plus standardised medical care group than the standardised medical care group (estimated mean difference -0·53 [95% CI -0·97 to -0·08]; p=0·020). The CBT plus standardised medical care group had a longer period of dissociative seizure freedom in the previous 6 months (estimated IRR 1·64 [95% CI 1·22 to 2·20]; p=0·001), reported better health-related quality of life on the EuroQoL-5 Dimensions-5 Level Health Today visual analogue scale (estimated mean difference 6·16 [95% CI 1·48 to 10·84]; p=0·010), less impairment in psychosocial functioning on the Work and Social Adjustment Scale (estimated mean difference -4·12 [95% CI -6·35 to -1·89]; p<0·001), less overall psychological distress than the standardised medical care group on the Clinical Outcomes in Routine Evaluation-10 scale (estimated mean difference -1·65 [95% CI -2·96 to -0·35]; p=0·013), and fewer somatic symptoms on the modified Patient Health Questionnaire-15 scale (estimated mean difference -1·67 [95% CI -2·90 to -0·44]; p=0·008). Clinical improvement at 12 months was greater in the CBT plus standardised medical care group than the standardised medical care alone group as reported by patients (estimated mean difference 0·66 [95% CI 0·26 to 1·04]; p=0·001) and by clinicians (estimated mean difference 0·47 [95% CI 0·21 to 0·73]; p<0·001), and the CBT plus standardised medical care group had greater satisfaction with treatment than did the standardised medical care group (estimated mean difference 0·90 [95% CI 0·48 to 1·31]; p<0·001). No significant differences in patient-reported seizure severity (estimated mean difference -0·11 [95% CI -0·50 to 0·29]; p=0·593) or seizure freedom in the last 3 months of the study (estimated odds ratio [OR] 1·77 [95% CI 0·93 to 3·37]; p=0·083) were identified between the groups. Furthermore, no significant differences were identified in the proportion of patients who had a more than 50% reduction in dissociative seizure frequency compared with baseline (OR 1·27 [95% CI 0·80 to 2·02]; p=0·313). Additionally, the 12-item Short Form survey-version 2 scores (estimated mean difference for the Physical Component Summary score 1·78 [95% CI -0·37 to 3·92]; p=0·105; estimated mean difference for the Mental Component Summary score 2·22 [95% CI -0·30 to 4·75]; p=0·084), the Generalised Anxiety Disorder-7 scale score (estimated mean difference -1·09 [95% CI -2·27 to 0·09]; p=0·069), and the Patient Health Questionnaire-9 scale depression score (estimated mean difference -1·10 [95% CI -2·41 to 0·21]; p=0·099) did not differ significantly between groups. Changes in dissociative seizures (rated by others) could not be assessed due to insufficient data. During the 12-month period, the number of adverse events was similar between the groups: 57 (31%) of 186 participants in the CBT plus standardised medical care group reported 97 adverse events and 53 (29%) of 182 participants in the standardised medical care group reported 79 adverse events. INTERPRETATION: CBT plus standardised medical care had no statistically significant advantage compared with standardised medical care alone for the reduction of monthly seizures. However, improvements were observed in a number of clinically relevant secondary outcomes following CBT plus standardised medical care when compared with standardised medical care alone. Thus, adults with dissociative seizures might benefit from the addition of dissociative seizure-specific CBT to specialist care from neurologists and psychiatrists. Future work is needed to identify patients who would benefit most from a dissociative seizure-specific CBT approach. FUNDING: National Institute for Health Research, Health Technology Assessment programme

    Core integrated simulations for the Divertor Tokamak Test facility scenarios towards consistent core-pedestal-SOL modelling

    Get PDF
    Deuterium plasma discharges of the Divertor Tokamak Test facility (DTT) in different operational scenarios have been predicted by a comprehensive first-principle based integrated modelling activity using state-of-art quasi-linear transport models. The results of this work refer to the updated DTT configuration, which includes a device size optimisation (enlargement to R-0=2.19 a = 0.70 m) and upgrades in the heating systems. The focus of this paper is on the core modelling, but special attention was paid to the consistency with the scrape-off layer parameters required to achieve divertor plasma detachment. The compatibility of these physics-based predicted scenarios with the electromagnetic coil system capabilities was then verified. In addition, first estimates of DTT sawteeth and of DTT edge localised modes were achieved

    Assessment of alternative divertor configurations as an exhaust solution for DEMO

    Get PDF
    Plasma exhaust has been identified as a major challenge towards the realisation of magnetic confinement fusion. To mitigate the risk that the single null divertor (SND) with a high radiation fraction in the scrape-of-layer (SOL) adopted for ITER will not extrapolate to a DEMO reactor, the EUROfusion consortium is assessing potential benefits and engineering challenges of alternative divertor configurations. Alternative configurations that could be readily adopted in a DEMO design include the X divertor (XD), the Super-X divertor (SXD), the Snowflake divertor (SFD) and the double null divertor (DND). The flux flaring towards the divertor target of the XD is limited by the minimum grazing angle at the target set by gaps and misalignments. The characteristic increase of the target radius in the SXD is a trade-off with the increased TF coil volume, but, ultimately, also limited by forces onto coils. Engineering constraints also limit XD and SXD characteristics to the outer divertor leg with a solution for the inner leg requiring up-down symmetric configurations. Capital cost increases with respect to a SND configuration are largest for SXD and SFD, which require both significantly more poloidal field coil conductors and in the case of the SXD also more toroidal field coil conductors. Boundary models with increasing degrees of complexity have been used to predict the beneficial effect of the alternative configurations on exhaust performance. While all alternative configurations should decrease the power that must be radiated in the outer divertor, only the DND and possibly the SFD also ease the radiation requirements in the inner divertor. These decreases of the radiation requirements are however expected to be small making the ability of alternative divertors to increase divertor radiation without excessive core performance degradation their main advantage. Initial 2D fluid modeling of argon seeding in XD and SFD configurations indicate such advantages over the SND, while results for SXD and DND are still pending. Additional improvements, expected from increased turbulence in the low poloidal field region of the SFD also remain to be verified. A more precise comparison with the SND as well as absolute quantitative predictions for all configurations requires more complete physics models that are currently only being developed
    corecore