7 research outputs found

    Screening and field performance of powder-formulated insecticides on eave tube inserts against pyrethroid resistant Anopheles gambiae s.l.:an investigation into 'actives' prior to a randomized controlled trial in CĂŽte d'Ivoire

    Get PDF
    BACKGROUND: The widespread emergence of insecticide resistance in African malaria vectors remains one of the main challenges facing control programmes. Electrostatic coating that uses polarity to bind insecticide particles is a new way of delivering insecticides to mosquitoes. Although previous tests demonstrated the resistance breaking potential of this application method, studies screening and investigating the residual efficacy of a broader range of insecticides are necessary. METHODS: Eleven insecticide powder formulations belonging to six insecticide classes (pyrethroid, carbamate, organophosphate, neonicotinoid, entomopathogenic fungus and boric acid) were initially screened for residual activity over 4 weeks against pyrethroid resistant Anopheles gambiae sensu lato (s.l.) from the M'bĂ© valley, central CĂŽte d'Ivoire. Tests were performed using the eave tube assay that simulates the behavioural interaction between mosquitoes and insecticide-treated inserts. With the best performing insecticide, persistence was monitored over 12 months and the actual contact time lethal to mosquitoes was explored, using a range of transient exposure time (5 s, 30 s, 1 min up to 2 min) in the tube assays in laboratory. The mortality data were calibrated against overnight release-recapture data from enclosure around experimental huts incorporating treated inserts at the M'bĂ© site. The natural recruitment rate of mosquitoes to the tube without insecticide treatment was assessed using fluorescent dust particles. RESULTS: Although most insecticides assayed during the initial screening induced significant mortality (45-100%) of pyrethroid resistant An. gambiae during the first 2 weeks, only 10% beta-cyfluthrin retained high residual efficacy, killing 100% of An. gambiae during the first month and > 80% over 8 subsequent months. Transient exposure for 5 s of mosquitoes to 10% beta-cyfluthrin produced 56% mortality, with an increase to 98% when contact time was extended to 2 min (P = 0.001). In the experimental hut enclosures, mortality of An. gambiae with 10% beta-cyfluthrin treated inserts was 55% compared to similar rate (44%) of mosquitoes that contacted the inserts treated with fluorescent dusts. This suggests that all host-seeking female mosquitoes that contacted beta-cyfluthrin treated inserts during host-seeking were killed. CONCLUSION: The eave tube technology is a novel malaria control approach which combines house proofing and targeted control of anopheline mosquitoes using insecticide treated inserts. Beta-cyfluthrin showed great promise for providing prolonged control of pyrethroid resistant An. gambiae and has potential to be deployed year-round in areas where malaria parasites are transmitted by highly pyrethroid resistant An. gambiae across sub-Saharan Africa

    Efficacy of a ‘lethal house lure’ against Culex quinquefasciatus from BouakĂ© city, CĂŽte d’Ivoire

    Get PDF
    Background: Eave tube technology is a novel method of insecticide application that uses an electrostatic coating system to boost insecticide efficacy against resistant mosquitoes. A series of previous experiments showed encouraging insecticidal effects against malaria vectors. This study was undertaken to assess the effects of the eave tube approach on other Culicidae, in particular Culex quinquefasciatus, under laboratory and semi-field conditions. Methods: Larvae of Cx. quinquefasciatus from BouakĂ© were collected and reared to adult stage, and World Health Organization (WHO) cylinder tests were performed to determine their resistance status. WHO standard 3-min cone bioassays were conducted using PermaNet 2.0 netting versus eave tube-treated inserts. To assess the transient exposure effect on Cx. quinquefasciatus, eave tube assay utilizing smelly socks as attractant was performed with exposure time of 30 s, 1 min, and 2 min on 10% beta-cyfluthrin-treated inserts. Residual activity of these treated inserts was then monitored over 9 months. Field tests involving release–recapture of Cx. quinquefasciatus within enclosures around experimental huts fitted with windows and untreated or insecticide-treated eave tubes were conducted to determine house entry preference and the impact of tubes on the survival of this species. Results: BouakĂ© Cx. quinquefasciatus displayed high resistance to three out of four classes of insecticides currently used in public health. After 3 min of exposure in cone tests, 10% beta-cyfluthrin-treated inserts induced 100% mortality in Cx. quinquefasciatus, whereas the long-lasting insecticidal net (LLIN) only killed 4.5%. With reduced exposure time on the eave tube insert, mortality was still 100% after 2 min, 88% after 1 min, and 44% after 30 s. Mortality following 1 h exposure on 10% beta-cyfluthrin-treated insert was > 80% continuously up to 7 months post-treatment. Data suggest that Cx. quinquefasciatus have a stronger preference for entering a house through the eaves than through windows. Beta-cyfluthrin-treated inserts were able to kill 51% of resistant Cx. quinquefasciatus released within the enclosure. Conclusions: Eave tubes are a novel method for delivery of insecticide to the house. They attract nuisance host-seeking Cx. quinquefasciatus mosquitoes and are as effective in controlling them as they are against pyrethroid-resistant Anopheles gambiae, despite the high level of resistance Cx. quinquefasciatus have developed

    Semi-field studies to better understand the impact of eave tubes on mosquito mortality and behaviour

    Get PDF
    Background: Eave tubes are a type of housing modification that provide a novel way of delivering insecticides to mosquitoes as they attempt to enter the house. The current study reports on a series of semi-field studies aimed at improving the understanding of how eave tubes might impact mosquito mortality and behaviour. Methods: Experiments were conducted using West African style experimental huts at a field site in M'be, CĂŽte d'Ivoire. Huts were modified in various ways to determine: (i) whether mosquitoes in this field setting naturally recruit to eave tubes; (ii) whether eave tubes can reduce house entry even in the absence of screening; (iii) whether mosquitoes suffer mortality if they attempt to exit a house via treated eave tubes; and, (iv) whether screening and eave tubes might deflect mosquitoes into neighbouring houses without the intervention. Results: Ninety percent more mosquitoes (Anopheles gambiae sensu lato, and other species) entered huts through open eaves tubes compared to window slits. The addition of insecticide-treated eave tubes reduced mosquito entry by 60%, even when windows remained open. Those mosquitoes that managed to enter the huts exhibited a 64% reduction in blood feeding and a tendency for increased mortality, suggesting contact with insecticide-treated inserts prior to hut entry. When An. gambiae mosquitoes were deliberately introduced into huts with treated eave tubes, there was evidence of six times increase in overnight mortality, suggesting mosquitoes can contact treated eave tube inserts when trying to exit the hut. There was no evidence for deflection of mosquitoes from huts with screening, or screening plus eave tubes, to adjacent unmodified huts. Conclusions: Eave tubes are a potentially effective way to target Anopheles mosquitoes with insecticides. That treated eave tubes can reduce mosquito entry even when windows are open is a potentially important result as it suggests that eave tubes might not need to be combined with household screening to have an impact on malaria transmission. The absence of deflection is also a potentially important result as coverage of eave tubes and/or screening is unlikely to be 100% and it is important that households that do not have the technology are not disadvantaged by those that do

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Anopheles vector distribution and malaria transmission dynamics in GbĂȘkĂȘ region, central CĂŽte d’Ivoire

    No full text
    Abstract Background A better understanding of vector distribution and malaria transmission dynamics at a local scale is essential for implementing and evaluating effectiveness of vector control strategies. Through the data gathered in the framework of a cluster randomized controlled trial (CRT) evaluating the In2Care (Wageningen, Netherlands) Eave Tubes strategy, the distribution of the Anopheles vector, their biting behaviour and malaria transmission dynamics were investigated in GbĂȘkĂȘ region, central CĂŽte d’Ivoire. Methods From May 2017 to April 2019, adult mosquitoes were collected monthly using human landing catches (HLC) in twenty villages in GbĂȘkĂȘ region. Mosquito species wereidentified morphologically. Monthly entomological inoculation rates (EIR) were estimated by combining the HLC data with mosquito sporozoite infection rates measured in a subset of Anopheles vectors using PCR. Finally, biting rate and EIR fluctuations were fit to local rainfall data to investigate the seasonal determinants of mosquito abundance and malaria transmission in this region. Results Overall, Anopheles gambiae, Anopheles funestus, and Anopheles nili were the three vector complexes found infected in the GbĂȘkĂȘ region, but there was a variation in Anopheles vector composition between villages. Anopheles gambiae was the predominant malaria vector responsible for 84.8% of Plasmodium parasite transmission in the area. An unprotected individual living in GbĂȘkĂȘ region received an average of 260 [222–298], 43.5 [35.8–51.29] and 3.02 [1.96–4] infected bites per year from An. gambiae, An. funestus and An. nili, respectively. Vector abundance and malaria transmission dynamics varied significantly between seasons and the highest biting rate and EIRs occurred in the months of heavy rainfall. However, mosquitoes infected with malaria parasites remained present in the dry season, despite the low density of mosquito populations. Conclusion These results demonstrate that the intensity of malaria transmission is extremely high in GbĂȘkĂȘ region, especially during the rainy season. The study highlights the risk factors of transmission that could negatively impact current interventions that target indoor control, as well as the urgent need for additional vector control tools to target the population of malaria vectors in GbĂȘkĂȘ region and reduce the burden of the disease

    Entomological indicators of malaria transmission prior to a cluster-randomized controlled trial of a 'lethal house lure' intervention in central CĂŽte d'Ivoire

    Get PDF
    BACKGROUND: A study was conducted prior to implementing a cluster-randomized controlled trial (CRT) of a lethal house lure strategy in central CĂŽte d'Ivoire to provide baseline information on malaria indicators in 40 villages across five health districts. METHODS: Human landing catches (HLC) were performed between November and December 2016, capturing mosquitoes indoors and outdoors between 18.00 and 08.00 h. Mosquitoes were processed for entomological indicators of malaria transmission (human biting, parity, sporozoite, and entomological inoculation rates (EIR)). Species composition and allelic frequencies of kdr-w and ace-1R mutations were also investigated within the Anopheles gambiae complex. RESULTS: Overall, 15,632 mosquitoes were captured. Anopheles gambiae sensu lato (s.l.) and Anopheles funestus were the two malaria vectors found during the survey period, with predominance for An. gambiae (66.2%) compared to An. funestus (10.3%). The mean biting rate for An. gambiae was almost five times higher than that for An. funestus (19.8 bites per person per night for An. gambiae vs 4.3 bites per person per night for An. funestus) and this was evident indoors and outdoors. Anopheles funestus was more competent to transmit malaria parasites in the study area, despite relatively lower number tested for sporozoite index (4.14% (63/1521) for An. gambiae vs 8.01% (59/736) for An. funestus; χ2 = 12.216; P  85%), coupled with high malaria transmission pattern, which could guide the use of Eave tubes in the study areas

    Evaluation of the interaction between insecticide resistance-associated genes and malaria transmission in Anopheles gambiae sensu lato in central CĂŽte d'Ivoire

    Get PDF
    BACKGROUND: There is evidence that the knockdown resistance gene (Kdr) L1014F and acetylcholinesterase-1 gene (Ace-1R) G119S mutations involved in pyrethroid and carbamate resistance in Anopheles gambiae influence malaria transmission in sub-Saharan Africa. This is likely due to changes in the behaviour, life history and vector competence and capacity of An. gambiae. In the present study, performed as part of a two-arm cluster randomized controlled trial evaluating the impact of household screening plus a novel insecticide delivery system (In2Care Eave Tubes), we investigated the distribution of insecticide target site mutations and their association with infection status in wild An. gambiae sensu lato (s.l.) populations. METHODS: Mosquitoes were captured in 40 villages around BouakĂ© by human landing catch from May 2017 to April 2019. Randomly selected samples of An. gambiae s.l. that were infected or not infected with Plasmodium sp. were identified to species and then genotyped for Kdr L1014F and Ace-1R G119S mutations using quantitative polymerase chain reaction assays. The frequencies of the two alleles were compared between Anopheles coluzzii and Anopheles gambiae and then between infected and uninfected groups for each species. RESULTS: The presence of An. gambiae (49%) and An. coluzzii (51%) was confirmed in BouakĂ©. Individuals of both species infected with Plasmodium parasites were found. Over the study period, the average frequency of the Kdr L1014F and Ace-1R G119S mutations did not vary significantly between study arms. However, the frequencies of the Kdr L1014F and Ace-1R G119S resistance alleles were significantly higher in An. gambiae than in An. coluzzii [odds ratio (95% confidence interval): 59.64 (30.81-131.63) for Kdr, and 2.79 (2.17-3.60) for Ace-1R]. For both species, there were no significant differences in Kdr L1014F or Ace-1R G119S genotypic and allelic frequency distributions between infected and uninfected specimens (P > 0.05). CONCLUSIONS: Either alone or in combination, Kdr L1014F and Ace-1R G119S showed no significant association with Plasmodium infection in wild An. gambiae and An. coluzzii, demonstrating the similar competence of these species for Plasmodium transmission in BouakĂ©. Additional factors including behavioural and environmental ones that influence vector competence in natural populations, and those other than allele measurements (metabolic resistance factors) that contribute to resistance, should be considered when establishing the existence of a link between insecticide resistance and vector competence
    corecore