4,357 research outputs found

    Social representation of the profession of psychology and the application of artificial intelligence: European Union regulatory authority and the application of psychology as a paradigm for the future

    Get PDF
    The digitisation of work affects thinking with respect to who will work, what work will entail and how governments will control change. The development of artificial intelligence (AI) is recognized as a threat and as a facilitator of change. The European Union leads in the development of regulatory power in the area. We examine these regulations and how they may affect the application of AI to work, especially with respect to psychology. Psychology is a profession universally conceived in the recent past to be immune from the predations of automation due to the level of cognitive and emotional skills believed to underly competence. The image or social representation of the discipline/profession plays a role in how the discipline is perceived and understood and how it is placed within the predicted matrix of jobs under threat. We demonstrate that psychology may not be immune in the context of a contemporary social representation. Regulatory practices in training and employment put psychology under threat as a “safe” profession. Europe has regulated and commodified the practice and training of psychology and hence has magnified the threat of replacement of those practices by AI. Governments and the professions need to be mindful of these consequences

    Jets or high velocity flows revealed in high-cadence spectrometer and imager co-observations?

    Full text link
    We report on active region EUV dynamic events observed simultaneously at high-cadence with SUMER/SoHO and TRACE. Although the features appear in the TRACE Fe ix/x 171A images as jets seen in projection on the solar disk, the SUMER spectral line profiles suggest that the plasma has been driven along a curved large scale magnetic structure, a pre-existing loop. The SUMER observations were carried out in spectral lines covering a large temperature range from 10^4 K to 10^6 K. The spectral analysis revealed that a sudden heating from an energy deposition is followed by a high velocity plasma flow. The Doppler velocities were found to be in the range from 90 to 160 km/s. The heating process has a duration which is below the SUMER exposure time of 25 s while the lifetime of the events is from 5 to 15 min. The additional check on soft X-ray Yohkoh images shows that the features most probably reach 3 MK (X-ray) temperatures. The spectroscopic analysis showed no existence of cold material during the events

    Planar Josephson Tunnel Junctions in a Transverse Magnetic Field

    Get PDF
    Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where demagnetization effects imposed by the junction geometry and configuration of the electrodes are important. Measurements of the critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size and critical current density show that it is advantageous to use a transverse magnetic field rather than an in-plane field to suppress the Josephson tunnel current and Fiske resonances in practical applications.Comment: 5 pages, 2 figures, submitted to Journal of Applied Physic

    Solar sail capture trajectories at Mercury

    Get PDF
    Mercury is an ideal environment for future planetary exploration by solar sail since it has proved difficult to reach with conventional propulsion and hence remains largely unexplored. In addition, its proximity to the Sun provides a solar sail acceleration of order ten times the sail characteristic acceleration at 1 AU. Conventional capture techniques are shown to be unsuitable for solar sails and a new method is presented. It is shown that capture is bound by upper and lower limits on the orbital elements of the approach orbit and that failure to be within limits results in a catastrophic collision with the planet. These limits are presented for a range of capture inclinations and sail characteristic accelerations. It is found that sail hyperbolic excess velocity is a critical parameter during capture at Mercury, with only a narrow allowed band in order to avoid collision with the planet. The new capture methodis demonstrated for a Mercury sample return mission

    FUSE Observations of the Dwarf Nova SW UMa During Quiescence

    Full text link
    We present spectroscopic observations of the short-period cataclysmic variable SW Ursa Majoris, obtained by the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite while the system was in quiescence. The data include the resonance lines of O VI at 1031.91 and 1037.61 A. These lines are present in emission, and they exhibit both narrow (~ 150 km/s) and broad (~ 2000 km/s) components. The narrow O VI emission lines exhibit unusual double-peaked and redshifted profiles. We attribute the source of this emission to a cooling flow onto the surface of the white dwarf primary. The broad O VI emission most likely originates in a thin, photoionized surface layer on the accretion disk. We searched for emission from H_2 at 1050 and 1100 A, motivated by the expectation that the bulk of the quiescent accretion disk is in the form of cool, molecular gas. If H_2 is present, then our limits on the fluxes of the H_2 lines are consistent with the presence of a surface layer of atomic H that shields the interior of the disk. These results may indicate that accretion operates primarily in the surface layers of the disk in SW UMa. We also investigate the far-UV continuum of SW UMa and place an upper limit of 15,000 K on the effective temperature of the white dwarf.Comment: 21 Pages, 3 figures, to be published in Ap

    Characterisation of HTSC ceramics from their resistive transition

    Full text link
    The resistivity vs. temperature relation in bulk ceramic HTSC under self-field conditions as well as in weak external magnetic fields is modelled by local Lorentz force induced fluxon motion with temperature dependent pinning. A pinning force density and two viscous drag coefficients in intergrain and intragrain regions, respectively, can be used as characteristic parameters describing the temperature, current, and external field dependences of the sample resistance.Comment: 12 pages, LaTeX2e, 6 figures (epsfig), to be published in Supercond. Sci. and Techno

    Explosive events - swirling transition region jets

    Full text link
    In this paper, we extend our earlier work to provide additional evidence for an alternative scenario to explain the nature of so-called `explosive events'. The bi-directed, fast Doppler motion of explosive events observed spectroscopically in the transition region emission is classically interpreted as a pair of bidirectional jets moving upward and downward from a reconnection site. We discuss the problems of such a model. In our previous work, we focused basically on the discrepancy of fast Doppler motion without detectable motion in the image plane. We now suggest an alternative scenario for the explosive events, based on our observations of spectral line tilts and bifurcated structure in some events. Both features are indicative of rotational motion in narrow structures. We explain the bifurcation as the result of rotation of hollow cylindrical structures and demonstrate that such a sheath model can also be applied to explain the nature of the puzzling `explosive events'. We find that the spectral tilt, the lack of apparent motion, the bifurcation, and a rapidly growing number of direct observations support an alternative scenario of linear, spicular-sized jets with a strong spinning motion.Comment: 9 pages, 3 figures, accepted for publication in Solar Physic

    Postfledging Survival, Movements, and Dispersal of Ring Ouzels (Turdus torquatus)

    Get PDF
    We thank Invercauld Estate for cooperation with access to Glen Clunie. S. Redpath, J. Wilson, and S. Roos provided valuable comments on the manuscript. This study was funded by the Royal Society for the Protection of Birds, Scottish Natural Heritage, and the Cairngorms National Park Authority. J.L.L. was supported by the Natural Environment Research Council.Peer reviewedPublisher PD
    corecore