43 research outputs found

    Quiet Sun Explosive Events: Jets, Splashes, and Eruptions

    Full text link
    Explosive events are small transition region phenomena characterised by broad non-Gaussian wings in their line profiles. Images from the Solar Dynamics Observatory (SDO) give a first view of the plasma dynamics at the sites of explosive events seen in O VI spectra of a region of quiet Sun, taken with the ultraviolet spectrometer SUMER/SOHO. Distinct event bursts were seen either at the junction of supergranular network cells or near emerging flux. Three are described in the context of their surrounding transition region (304 A) and coronal (171 A) activity. One showed plasma ejected from one footpoint of a small loop which resulted in a `splash' at the other footpoint. The second was related to flux cancellation, inferred from SDO/HMI magnetograms, and a coronal dimming surrounded by a ring of bright EUV emission with explosive events at positions where the spectrometer slit crossed the bright ring. The third series of events occurred at the base of a slow mini-CME. All events studied here imply jet-like flows probably triggered by magnetic reconnection at supergranular junctions. Events come from sites close to the footpoints of jets seen in AIA images, and possibly from the landing site of induced high velocity flows. They are not caused by rapid rotation in spicules.Comment: 19 pages, 11 figures To be published in Solar Physics. For associated movies, see http://www.mps.mpg.de/data/outgoing/innes/ees

    Iris si iv line profiles: An indication for the plasmoid instability during small-scale magnetic reconnection on the sun

    Full text link
    Our understanding of the process of fast reconnection has undergone a dramatic change in the last 10 years driven, in part, by the availability of high-resolution numerical simulations that have consistently demonstrated the break-up of current sheets into magnetic islands, with reconnection rates that become independent of Lundquist number, challenging the belief that fast magnetic reconnection in flares proceeds via the Petschek mechanism that invokes pairs of slow-mode shocks connected to a compact diffusion region. The reconnection sites are too small to be resolved with images but these reconnection mechanisms, Petschek and the plasmoid instability, have reconnection sites with very different density and velocity structures and so can be distinguished by high-resolution line-profiles observations. Using IRIS spectroscopic observations we obtain a survey of typical line profiles produced by small-scale events thought to be reconnection sites on the Sun. Slit-jaw images are used to investigate the plasma heating and re-configuration at the sites. A sample of 15 events from two active regions is presented. The line profiles are complex with bright cores and broad wings extending to over 300 km/s. The profiles can be reproduced with the multiple magnetic islands and acceleration sites that characterise the plasmoid instability but not by bi-directional jets that characterise the Petschek mechanism. This result suggests that if these small-scale events are reconnection sites, then fast reconnection proceeds via the plasmoid instability, rather than the Petschek mechanism during small-scale reconnection on the Sun.Comment: 10 pages, 18 Figures, to be published in Ap

    Analysis of UV and EUV emission from impacts on the Sun after 2011 June 7 eruptive flare

    Full text link
    On 2011 June 7 debris from a large filament eruption fell back to the Sun causing bright ultraviolet (UV) and extreme ultraviolet (EUV) splashes across the surface. These impacts may give clues on the process of stellar accretion. The aim is to investigate how the impact emission is influenced by structures in the falling ejecta and at the solar surface. We determine the UV and EUV light curves of a sample of impacts. The ballistic impact velocity is estimated from the ejection and landing times and, where possible, compared with the velocity derived by tracking the downflows in SDO/AIA and STEREO/EUVI images. Estimates of the column density before impact are made from the darkness of the falling plasma in the 193 A channel. The impact velocities were between 230 and 450 km/s. All impacts produced bright EUV emission at the impact site but bright UV was only observed when the impacting fragments reached the chromosphere. There was no clear relation between EUV intensity and kinetic energy. Low UV to EUV intensity ratios (I{UV}/I{EUV}) were seen (i) from impacts of low column-density fragments, (ii) when splashes, produced by some impacts, prevented subsequent fragments from reaching the chromosphere, and (iii) from an impact in an active region. The earliest impacts with the lowest velocity (~250 km/s) had the highest I{UV}/I{EUV}. The I{UV}/I{EUV} decreases with impact velocity, magnetic field at the impact site, and EUV ionising flux. Many of the infalling fragments dissipate above the chromosphere either due to ionisation and trapping in magnetic structures, or to them encountering a splash from an earlier impact. If the same happens in accreting stars then the reduced X-ray compared to optical emission that has been observed is more likely due to absorption by the trailing stream than locally at the impact site.Comment: 10 pages, 14 figures To be published in A&

    Prominence Mass Supply and the Cavity

    Get PDF
    A prevalent but untested paradigm is often used to describe the prominence-cavity system: the cavity is under-dense because it is evacuated by supplying mass to the condensed prominence. The thermal non-equilibrium (TNE) model of prominence formation offers a theoretical framework to predict the thermodynamic evolution of the prominence and the surrounding corona. We examine the evidence for a prominence-cavity connection by comparing the TNE model with diagnostics of dynamic extreme ultraviolet emission (EUV) surrounding the prominence, specifically prominence horns. Horns are correlated extensions of prominence plasma and coronal plasma which appear to connect the prominence and cavity. The TNE model predicts that large-scale brightenings will occur in the SDO/AIA 171\AA\ bandpass near the prominence that are associated with the cooling phase of condensation formation. In our simulations, variations in the magnitude of footpoint heating lead to variations in the duration, spatial scale, and temporal offset between emission enhancements in the other EUV bandpasses. While these predictions match well a subset of the horn observations, the range of variations in the observed structures is not captured by the model. We discuss the implications of our one-dimensional loop simulations for the three-dimensional time-averaged equilibrium in the prominence and the cavity. Evidence suggests that horns are likely caused by condensing prominence plasma, but the larger question of whether this process produces a density-depleted cavity requires a more tightly constrained model of heating and better knowledge of the associated magnetic structure

    Observations of supra-arcade fans: instabilities at the head of reconnection jets

    Full text link
    Supra-arcade fans are bright, irregular regions of emission that develop during eruptive flares, above flare arcades. The underlying flare arcades are thought to be a consequence of magnetic reconnection along a current sheet in the corona. At the same time, theory predicts plasma jets from the reconnection site which would be extremely difficult to observe directly because of their low density. It has been suggested that the dark supra-arcade downflows (SADs) seen falling through supra-arcade fans may be low density jet plasma. The head of a low density jet directed towards higher density plasma would be Rayleigh-Taylor unstable, and lead to the development of rapidly growing low and high density fingers along the interface. Using SDO/AIA 131A images, we show details of SADs seen from three different orientations with respect to the flare arcade and current sheet, and highlight features that have been previously unexplained, such as the splitting of SADs at their heads, but are a natural consequence of instabilities above the arcade. Comparison with 3-D magnetohydrodynamic simulations suggests that supra-arcade downflows are the result of secondary instabilities of the Rayleigh-Taylor type in the exhaust of reconnection jets.Comment: 10 pages, 7 figures To be published in ApJ, 796, 27 (2014

    Case studies of multi-day 3He-rich solar energetic particle periods

    Full text link
    Context. Impulsive solar energetic particle events in the inner heliosphere show the long-lasting enrichment of 3He. Aims. We study the source regions of long-lasting 3He-rich solar energetic particle (SEP) events Methods. We located the responsible open magnetic field regions, we combined potential field source surface extrapolations (PFSS) with the Parker spiral, and compared the magnetic field of the identified source regions with in situ magnetic fields. The candidate open field regions are active region plages. The activity was examined by using extreme ultraviolet (EUV) images from the Solar Dynamics Observatory (SDO) and STEREO together with radio observations from STEREO and WIND. Results. Multi-day periods of 3He-rich SEP events are associated with ion production in single active region. Small flares or coronal jets are their responsible solar sources. We also find that the 3He enrichment may depend on the occurrence rate of coronal jets.Comment: 7page, 4 figure

    Secondary Rayleigh-Taylor type Instabilities in the Reconnection Exhaust Jet as a Mechanism for Supra-Arcade Downflows

    Full text link
    Supra-arcade downflows (hereafter referred to as SADs) are low-emission, elongated, finger-like features usually observed in active-region coronae above post-eruption flare arcades. Observations exhibit downward moving SADs intertwined with bright upward moving spikes. Whereas SADs are dark voids, spikes are brighter, denser structures. Although SADs have been observed for decades, the mechanism of formation of SADs remains an open issue. In our three-dimensional resistive magnetohydrodynamic simulations, we demonstrate that secondary Rayleigh-Taylor type instabilities develop in the downstream region of a reconnecting current sheet. The instability results in the formation of low-density coherent structures that resemble SADs, and high-density structures that appear to be spike-like. Comparison between the simulation results and observations suggests that secondary Rayleigh-Taylor type instabilities in the exhaust of reconnecting current sheets provide a plausible mechanism for observed SADs and spikes

    Association of 3He-Rich Solar Energetic Particles with Large-Scale Coronal Waves

    Full text link
    Small 3He-rich solar energetic particle (SEP) events have been commonly associated with extreme-ultraviolet (EUV) jets and narrow coronal mass ejections (CMEs) which are believed to be the signatures of magnetic reconnection involving field lines open to interplanetary space. The elemental and isotopic fractionation in these events are thought to be caused by processes confined to the flare sites. In this study we identify 32 3He-rich SEP events observed by the Advanced Composition Explorer near the Earth during the solar minimum period 2007-2010 and examine their solar sources with the high resolution Solar Terrestrial Relations Observatory (STEREO) EUV images. Leading the Earth, STEREO-A provided for the first time a direct view on 3He-rich flares, which are generally located on the Sun's western hemisphere. Surprisingly, we find that about half of the 3He-rich SEP events in this survey are associated with large-scale EUV coronal waves. An examination of the wave front propagation, the source-flare distribution and the coronal magnetic field connections suggests that the EUV waves may affect the injection of 3He-rich SEPs into interplanetary space.Comment: accepted for publication in The Astrophysical Journa

    Molecular absorption in transition region spectral lines

    Full text link
    Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary . The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales and introduces a new complexity into our understanding of solar thermal structure. It lends credence to previous numerical studies that found evidence for elevated pockets of cool gas in the chromosphere.Comment: accepted by A&A Letter

    Destabilization of a Solar Prominence/Filament Field System by a Series of Eight Homologous Eruptive Flares

    Full text link
    Homologous flares are flares that occur repetitively in the same active region, with similar structure and morphology. A series of at least eight homologous flares occurred in active region NOAA 11237 over 16 - 17 June 2011. A nearby prominence/filament was rooted in the active region, and situated near the bottom of a coronal cavity. The active region was on the southeast solar limb as seen from SDO/AIA, and on the disk as viewed from STEREO/EUVI-B. The dual perspective allows us to study in detail behavior of the prominence/filament material entrained in the magnetic field of the repeatedly-erupting system. Each of the eruptions was mainly confined, but expelled hot material into the prominence/filament cavity system (PFCS). The field carrying and containing the ejected hot material interacted with the PFCS and caused it to inflate, resulting in a step-wise rise of the PFCS approximately in step with the homologous eruptions. The eighth eruption triggered the PFCS to move outward slowly, accompanied by a weak coronal dimming. As this slow PFCS eruption was underway, a final ejective flare occurred in the core of the active region, resulting in strong dimming in the EUVI-B images and expulsion of a coronal mass ejection (CME). A plausible scenario is that the repeated homologous flares could have gradually destabilized the PFCS, and its subsequent eruption removed field above the acitive region and in turn led to the ejective flare, strong dimming, and CME.Comment: 11 pages, 12 figures, Accepted for publication in Ap
    corecore