124 research outputs found

    Stereochemical studies on protonated bridgehead amines. ^1H NMR determination of cis and trans B-C ring-fused structures for salts of hexahydropyrrolo [2,1-a] isoquinolines and related C ring homologs. Capture of unstable ring-fused structures in the solid state

    Get PDF
    Acid-addition salts of tricyclic isoquinolines 2a/b, 3a/b, 4a-4c, 5, 6a/b, 7, 8a/b, 9a/b, and 17a/b were studied by high-field ^1H NMR in CDCl_3 solution. Cis (e.g., 14 and 15 in Figure 1) and trans (e.g., 13)B-C ring-fused structures were identified by using the vicinal ^3J(CH-NH) coupling constants, which demonstrate a Karplus-like behavior. In some cases, we initially observed a trans form, which converted to a cis A form by N H proton exchange. For 4c.HBr, the exchange process was slowed by addition of trifluoroacetic acid. In many cases, cis A and cis B structures were preferred in solution. The pendant phenyl group exerted a strong influence on the preferred solution structure. Observation of the initial, unstable trans-fused structures was related to their capture in the solid state and release intact on dissolution. X-ray diffraction was performed on the HBr salts of 2a (B-C cis), 2b (B-C cis), and 4c (B-C trans). The result for 4c.HBr confirmed the connection between the initial trans form in solution and the solid state. For 17b.HCI two conformers, associated with hindered rotation about the bond connecting the 2,6-disubstituted phenyl group to the tricyclic array, were detected at ambient probe temperature; however, rotamers were not observed for either of the two forms (trans and cis A) of 17a.HBr. Two conformers were also found for 16b.HBr. Temperature-dependent behavior was recorded in the ^1H NMR spectra of 17b.HBr and 16b.HBr; the activation free energy for interconversion of conformers was estimated to be in the vicinity of 17 kcal/mol for the former and 14-15 kcal/mol for the latter. The ^1H NMR spectrum of butaclamol hydrochloride (20.HC1), a potent neuroleptic agent, in Me_2SO-d_6 revealed two species in a ratio of 81:19, which were assigned as trans and cis A forms, respectively. ^1H NMR data for various free bases are also presented and discussed. Empirical force field calculations on three model hydrocarbons are discussed from a perspective of finding an explanation for the configurational/conformational behavior of the bridgehead ammonium salts. Diverse literature examples of structures for protonated bridgehead amines are also discussed. A tentative rationale is suggested for the preference of cis A forms in some protonated tetrahydroisoquinoline derivatives

    Comparison of total body water estimates from O-18 and bioelectrical response prediction equations

    Get PDF
    Identification of an indirect, rapid means to measure total body water (TBW) during space flight may aid in quantifying hydration status and assist in countermeasure development. Bioelectrical response testing and hydrostatic weighing were performed on 27 subjects who ingested O-18, a naturally occurring isotope of oxygen, to measure true TBW. TBW estimates from three bioelectrical response prediction equations and fat-free mass (FFM) were compared to TBW measured from O-18. A repeated measures MANOVA with post-hoc Dunnett's Test indicated a significant (p less than 0.05) difference between TBW estimates from two of the three bioelectrical response prediction equations and O-18. TBW estimates from FFM and the Kushner & Schoeller (1986) equation yielded results that were similar to those given by O-18. Strong correlations existed between each prediction method and O-18; however, standard errors, identified through regression analyses, were higher for the bioelectrical response prediction equations compared to those derived from FFM. These findings suggest (1) the Kushner & Schoeller (1986) equation may provide a valid measure of TBW, (2) other TBW prediction equations need to be identified that have variability similar to that of FFM, and (3) bioelectrical estimates of TBW may prove valuable in quantifying hydration status during space flight

    Native aggregation as a cause of origin of temporary cellular structures needed for all forms of cellular activity, signaling and transformations

    Get PDF
    According to the hypothesis explored in this paper, native aggregation is genetically controlled (programmed) reversible aggregation that occurs when interacting proteins form new temporary structures through highly specific interactions. It is assumed that Anfinsen's dogma may be extended to protein aggregation: composition and amino acid sequence determine not only the secondary and tertiary structure of single protein, but also the structure of protein aggregates (associates). Cell function is considered as a transition between two states (two states model), the resting state and state of activity (this applies to the cell as a whole and to its individual structures). In the resting state, the key proteins are found in the following inactive forms: natively unfolded and globular. When the cell is activated, secondary structures appear in natively unfolded proteins (including unfolded regions in other proteins), and globular proteins begin to melt and their secondary structures become available for interaction with the secondary structures of other proteins. These temporary secondary structures provide a means for highly specific interactions between proteins. As a result, native aggregation creates temporary structures necessary for cell activity

    Characterization of Bleomycin-Resistant DNA

    No full text
    After reaction of DNA with high concentrations of bleomycin, approximately 80% of the DNA becomes trichloroacetic acid (TCA) soluble. The remaining 20% of the DNA remains TCA insoluble. Upon further treatment of this TCA-insoluble material with high concentrations of the drug, no further drug action can be detected. Drug action is defined as fragmentation of DNA to smaller molecular size, release of free bases, and TCA solubilization. This material which is not attacked by bleomycin has been termed bleomycin-resistant DNA. This bleomycin-resistant DNA does not compete with native DNA in the bleomycin reaction indicating that there is no binding or inactivation of the drug by the resistant DNA. The resistant DNA shows very little hyperchromicity when heated through the melting temperature for the corresponding native DNA, indicating a single-stranded structure. Results of sedimentation and equilibrium analyses yield a molecular weight of about 4,000 daltons. This value is the same regardless of the source of the native DNA. Finally, the bleomycin-resistant DNA exhibits a base composition similar to that of the native DNA from which it was derived
    • …
    corecore