15 research outputs found

    Dirac lines and loop at the Fermi level in the Time-Reversal Symmetry Breaking Superconductor LaNiGa2_2

    Full text link
    Unconventional superconductors have Cooper pairs with lower symmetries than in conventional superconductors. In most unconventional superconductors, the additional symmetry breaking occurs in relation to typical ingredients such as strongly correlated Fermi liquid phases, magnetic fluctuations, or strong spin-orbit coupling in noncentrosymmetric structures. In this article, we show that the time-reversal symmetry breaking in the superconductor LaNiGa2_2 is enabled by its previously unknown topological electronic band structure. Our single crystal diffraction experiments indicate a nonsymmorphic crystal structure, in contrast to the previously reported symmorphic structure. The nonsymmorphic symmetries transform the kz=Ï€/ck_z=\pi/c plane of the Brillouin zone boundary into a node-surface. Band-structure calculations reveal that distinct Fermi surfaces become degenerate on the node-surface and form Dirac lines and a Dirac loop at the Fermi level. Two symmetry related Dirac points remain degenerate under spin-orbit coupling. ARPES measurements confirm the calculations and provide evidence for the Fermi surface degeneracies on the node-surface. These unique topological features enable an unconventional superconducting gap in which time-reversal symmetry can be broken in the absence of other typical ingredients. LaNiGa2_2 is therefore a topological crystalline superconductor that breaks time-reversal symmetry without any overlapping magnetic ordering or fluctuations. Our findings will enable future discoveries of additional topological superconductors

    Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser

    No full text
    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10(12) photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å(-1), respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å(-1), granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors
    corecore