9 research outputs found

    Role of stress-activated OCT4A in the cell fate decisions of embryonal carcinoma cells treated with etoposide

    No full text
    Tumor cellular senescence induced by genotoxic treatments has recently been found to be paradoxically linked to the induction of “stemness.” This observation is critical as it directly impinges upon the response of tumors to current chemo-radio-therapy treatment regimens. Previously, we showed that following etoposide (ETO) treatment embryonal carcinoma PA-1 cells undergo a p53-dependent upregulation of OCT4A and p21Cip1 (governing self-renewal and regulating cell cycle inhibition and senescence, respectively). Here we report further detail on the relationship between these and other critical cell-fate regulators. PA-1 cells treated with ETO display highly heterogeneous increases in OCT4A and p21Cip1 indicative of dis-adaptation catastrophe. Silencing OCT4A suppresses p21Cip1, changes cell cycle regulation and subsequently suppresses terminal senescence; p21Cip1-silencing did not affect OCT4A expression or cellular phenotype. SOX2 and NANOG expression did not change following ETO treatment suggesting a dissociation of OCT4A from its pluripotency function. Instead, ETO-induced OCT4A was concomitant with activation of AMPK, a key component of metabolic stress and autophagy regulation. p16ink4a, the inducer of terminal senescence, underwent autophagic sequestration in the cytoplasm of ETO-treated cells, allowing alternative cell fates. Accordingly, failure of autophagy was accompanied by an accumulation of p16ink4a, nuclear disintegration, and loss of cell recovery. Together, these findings imply that OCT4A induction following DNA damage in PA-1 cells, performs a cell stress, rather than self-renewal, function by moderating the expression of p21Cip1, which alongside AMPK helps to then regulate autophagy. Moreover, this data indicates that exhaustion of autophagy, through persistent DNA damage, is the cause of terminal cellular senescence

    Cardioprotective Activity of Some 2-Arylimino-1,3-Thiazole Derivatives

    No full text
    The article presents the synthesis of 2-arylimino-4-methyl-2,3-dihydro-1,3-thiazoles via Hantzsch reaction of thioureas and 3-chloropentane-2,4-dione or ethyl 2-chloro-3-oxobutanoate. The structure of synthesized compounds was confirmed by LCMS, 1H, and 13C NMR spectra. Cardioprotective activity of synthesized thiazole derivatives were studied in vitro on the isolated rings of the thoracic aorta of laboratory rats. Based on pharmacological studies, the tested compounds possessed a moderate to high cardioprotective effect. A prospective 1-[2-(4-methoxyphenylimino)-4-methyl-3-(4-methylpiperazine-1-yl)-2,3-dihydro-1,3-thiazole-5-yl] ethan-1-one hydrochloride 4c was identified. The mentioned compound has delayed the development of constrictor responses of isolated rings of the thoracic rat aorta and exceeds the activity of L-carnitine by 18.2% and meldonium by 12.9%. The compound 4c may be proposed as a potential cardioprotective agent for in-depth pharmacological studies

    Cytochrome P450 genes expression in human prostate cancer

    No full text
    CYP-dependent metabolites play a critical role in regulating the cell cycle, as well as the proliferative, invasive, and migratory activity of cancer cells. We conducted a study to analyze the relative gene expression of various CYPs (CYP7B1, CYP27A1, CYP39A1, CYP51, CYP1B1, CYP3A5, CYP4F8, CYP5A1, CYP4F2, CYP2J2, CYP2E1, CYP2R1, CYP27B1, CYP24A1) in 41 pairs of prostate samples (tumor and conventional normal tissues) using qPCR. Our analysis determined significant individual variability in the expression levels of all studied CYPs, both in the tumor and in conventionally normal groups. However, when we performed a paired test between the tumor and normal groups, we found no significant difference in the expression of the studied genes. We did observe a tendency to increase the level of CYP1B1 expression in the tumor group. We also did not find any significant difference between the levels of the studied CYPs in the tumor and conventional normal groups at different stages of prostate cancer and pathomorphological indicators. Correlation analysis revealed the presence of a positive relationship between the expressions of some cholesterol-metabolizing CYP genes, as well as between genes responsible for vitamin D biosynthesis and cholesterol biosynthesis. We observed significant correlative relationships between the expression of CYPs and some prostate cancer-related genes (CDH2, MMP9, SCHLAP1, GCR, CYP17A1, ACTA2, CXCL14, FAP, CCL17, MSMB, IRF1, VDR). Therefore, the expression of CYPs is not directly associated with prostate cancer but is largely determined by genetic, epigenetic factors, as well as endogenous substrates and xenobiotics. The significant correlative relationship between CYPs and genes associated with cancer may indicate common regulatory pathways that may have a synergistic effect on the tumor, ensuring the survival of cancer cells

    Role of stress-activated OCT4A in the cell fate decisions of embryonal carcinoma cells treated with etoposide.

    No full text
    <p>Tumor cellular senescence induced by genotoxic treatments has recently been found to be paradoxically linked to the induction of “stemness.” This observation is critical as it directly impinges upon the response of tumors to current chemo-radio-therapy treatment regimens. Previously, we showed that following etoposide (ETO) treatment embryonal carcinoma PA-1 cells undergo a p53-dependent upregulation of OCT4A and p21Cip1 (governing self-renewal and regulating cell cycle inhibition and senescence, respectively). Here we report further detail on the relationship between these and other critical cell-fate regulators. PA-1 cells treated with ETO display highly heterogeneous increases in OCT4A and p21Cip1 indicative of dis-adaptation catastrophe. Silencing OCT4A suppresses p21Cip1, changes cell cycle regulation and subsequently suppresses terminal senescence; p21Cip1-silencing did not affect OCT4A expression or cellular phenotype. SOX2 and NANOG expression did not change following ETO treatment suggesting a dissociation of OCT4A from its pluripotency function. Instead, ETO-induced OCT4A was concomitant with activation of AMPK, a key component of metabolic stress and autophagy regulation. p16ink4a, the inducer of terminal senescence, underwent autophagic sequestration in the cytoplasm of ETO-treated cells, allowing alternative cell fates. Accordingly, failure of autophagy was accompanied by an accumulation of p16ink4a, nuclear disintegration, and loss of cell recovery. Together, these findings imply that OCT4A induction following DNA damage in PA-1 cells, performs a cell stress, rather than self-renewal, function by moderating the expression of p21Cip1, which alongside AMPK helps to then regulate autophagy. Moreover, this data indicates that exhaustion of autophagy, through persistent DNA damage, is the cause of terminal cellular senescence.</p

    Role of stress-activated OCT4A in the cell fate decisions of embryonal carcinoma cells treated with etoposide

    No full text
    <p>Tumor cellular senescence induced by genotoxic treatments has recently been found to be paradoxically linked to the induction of “stemness.” This observation is critical as it directly impinges upon the response of tumors to current chemo-radio-therapy treatment regimens. Previously, we showed that following etoposide (ETO) treatment embryonal carcinoma PA-1 cells undergo a p53-dependent upregulation of OCT4A and p21Cip1 (governing self-renewal and regulating cell cycle inhibition and senescence, respectively). Here we report further detail on the relationship between these and other critical cell-fate regulators. PA-1 cells treated with ETO display highly heterogeneous increases in OCT4A and p21Cip1 indicative of dis-adaptation catastrophe. Silencing OCT4A suppresses p21Cip1, changes cell cycle regulation and subsequently suppresses terminal senescence; p21Cip1-silencing did not affect OCT4A expression or cellular phenotype. SOX2 and NANOG expression did not change following ETO treatment suggesting a dissociation of OCT4A from its pluripotency function. Instead, ETO-induced OCT4A was concomitant with activation of AMPK, a key component of metabolic stress and autophagy regulation. p16ink4a, the inducer of terminal senescence, underwent autophagic sequestration in the cytoplasm of ETO-treated cells, allowing alternative cell fates. Accordingly, failure of autophagy was accompanied by an accumulation of p16ink4a, nuclear disintegration, and loss of cell recovery. Together, these findings imply that OCT4A induction following DNA damage in PA-1 cells, performs a cell stress, rather than self-renewal, function by moderating the expression of p21Cip1, which alongside AMPK helps to then regulate autophagy. Moreover, this data indicates that exhaustion of autophagy, through persistent DNA damage, is the cause of terminal cellular senescence.</p
    corecore