1,505 research outputs found

    Investigating microstructural evolution during the electroreduction of UO2 to U in LiCl-KCl eutectic using focused ion beam tomography

    Get PDF
    Reprocessing of spent nuclear fuels using molten salt media is an attractive alternative to liquid-liquid extraction techniques. Pyroelectrochemical processing utilizes direct, selective, electrochemical reduction of uranium dioxide, followed by selective electroplating of a uranium metal. Thermodynamic prediction of the electrochemical reduction of UO2 to U in LiCl-KCl eutectic has shown to be a function of the oxide ion activity. The pO2− of the salt may be affected by the microstructure of the UO2 electrode. A uranium dioxide filled “micro-bucket” electrode has been partially electroreduced to uranium metal in molten lithium chloride-potassium chloride eutectic. This partial electroreduction resulted in two distinct microstructures: a dense UO2 and a porous U metal structure were characterised by energy dispersive X-ray spectroscopy. Focused ion beam tomography was performed on five regions of this electrode which revealed an overall porosity ranging from 17.36% at the outer edge to 3.91% towards the centre, commensurate with the expected extent of reaction in each location. The pore connectivity was also seen to reduce from 88.32% to 17.86% in the same regions and the tortuosity through the sample was modelled along the axis of propagation of the electroreduction, which was seen to increase from a value of 4.42 to a value of infinity (disconnected pores). These microstructural characteristics could impede the transport of O2− ions resulting in a change in the local pO2− which could result in the inability to perform the electroreduction

    Theoretical investigation of finite size effects at DNA melting

    Get PDF
    We investigated how the finiteness of the length of the sequence affects the phase transition that takes place at DNA melting temperature. For this purpose, we modified the Transfer Integral method to adapt it to the calculation of both extensive (partition function, entropy, specific heat, etc) and non-extensive (order parameter and correlation length) thermodynamic quantities of finite sequences with open boundary conditions, and applied the modified procedure to two different dynamical models. We showed that rounding of the transition clearly takes place when the length of the sequence is decreased. We also performed a finite-size scaling analysis of the two models and showed that the singular part of the free energy can indeed be expressed in terms of an homogeneous function. However, both the correlation length and the average separation between paired bases diverge at the melting transition, so that it is no longer clear to which of these two quantities the length of the system should be compared. Moreover, Josephson's identity is satisfied for none of the investigated models, so that the derivation of the characteristic exponents which appear, for example, in the expression of the specific heat, requires some care

    Mechanisms of compressive failure in woven composites and stitched laminates

    Get PDF
    Stitched laminates and angle interlock woven composites have been studied in uniaxial, in-plane, monotonic compression. Failure mechanisms have been found to depend strongly on both the reinforcement architecture and the degree of constraint imposed by the loading grips. Stitched laminates show higher compressive strength, but are brittle, possessing no load bearing capacity beyond the strain for peak load. Post-mortem inspection shows a localized shear band of buckled and broken fibers, which is evidently the product of an unstably propagating kink band. Similar shear bands are found in the woven composites if the constraint of lateral displacements is weak; but, under strong constraint, damage is not localized but distributed throughout the gauge section. While the woven composites tested are weaker than the stitched laminates, they continue to bear significant loads to compressive strains of approx. 15 percent, even when most damage is confined to a shear band

    Challenges in the delivery of e-government through kiosks

    Get PDF
    Kiosks are increasingly being heralded as a technology through which governments, government departments and local authorities or municipalities can engage with citizens. In particular, they have attractions in their potential to bridge the digital divide. There is some evidence to suggest that the citizen uptake of kiosks and indeed other channels for e-government, such as web sites, is slow, although studies on the use of kiosks for health information provision offer some interesting perspectives on user behaviour with kiosk technology. This article argues that the delivery of e-government through kiosks presents a number of strategic challenges, which will need to be negotiated over the next few years in order that kiosk applications are successful in enhancing accessibility to and engagement with e-government. The article suggests that this involves consideration of: the applications to be delivered through a kiosk; one stop shop service and knowledge architectures; mechanisms for citizen identification; and, the integration of kiosks within the total interface between public bodies and their communities. The article concludes by outlining development and research agendas in each of these areas.</p

    Differential expression of secreted factors SOSTDC1 and ADAMTS8 cause pro-fibrotic changes in linear morphoea fibroblasts

    Get PDF
    This is the peer reviewed version of the following article: Badshah, I. I., et al. "Differential expression of secreted factors SOSTDC1 and ADAMTS8 cause pro-fibrotic changes in linear morphoea fibroblasts." British Journal of Dermatology 0(ja)., which has been published in final form at https://doi.org/10.1111/bjd.17352. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived VersionsFunding: RO, IB and SB are funded by the Great Ormond Street Children's Charity. This research was supported by the NIHR Great Ormond Street Hospital Biomedical Research Centr

    New CMB Power Spectrum Constraints from MSAMI

    Get PDF
    We present new cosmic microwave background (CMB) anisotropy results from the combined analysis of the three flights of the first Medium Scale Anisotropy Measurement (MSAM1). This balloon-borne bolometric instrument measured about 10 square degrees of sky at half-degree resolution in 4 frequency bands from 5.2 icm to 20 icm with a high signal-to-noise ratio. Here we present an overview of our analysis methods, compare the results from the three flights, derive new constraints on the CMB power spectrum from the combined data and reduce the data to total-power Wiener-filtered maps of the CMB. A key feature of this new analysis is a determination of the amplitude of CMB fluctuations at ℓ∌400\ell \sim 400. The analysis technique is described in a companion paper by Knox.Comment: 9 pages, 6 included figure

    Towards Critical Human Resource Management Education (CHRME): a sociological imagination approach

    Get PDF
    This article explores the professional standing of the discipline of human resource management (HRM) in business schools in the post-financial crisis period. Using the prism of the sociological imagination, it explains the learning to be gained from teaching HRM that is sensitive to context, power and inequality. The context of crisis provides ideal circumstances for critical reflexivity and for integrating wider societal issues into the HRM curriculum. It argues for Critical Human Resource Management Education or CHRME, which, if adopted, would be an antidote to prescriptive practitioner-oriented approaches. It proceeds to set out five principles for CHRME: using the ‘sociological imagination’ prism; emphasizing the social nature of the employment relationship; investigating paradox within HRM; designing learning outcomes that encourage students to appraise HRM outcomes critically; and reflexive critique. Crucially, CHRME offers a teaching strategy that does not neglect or marginalize the reality of structural power, inequality and employee work experiences

    Comparing Cosmic Microwave Background Datasets

    Get PDF
    To extract reliable cosmic parameters from cosmic microwave background datasets, it is essential to show that the data are not contaminated by residual non-cosmological signals. We describe general statistical approaches to this problem, with an emphasis on the case in which there are two datasets that can be checked for consistency. A first visual step is the Wiener filter mapping from one set of data onto the pixel basis of another. For more quantitative analyses we develop and apply both Bayesian and frequentist techniques. We define the ``contamination parameter'' and advocate the calculation of its probability distribution as a means of examining the consistency of two datasets. The closely related ``probability enhancement factor'' is shown to be a useful statistic for comparison; it is significantly better than a number of chi-squared quantities we consider. Our methods can be used: internally (between different subsets of a dataset) or externally (between different experiments); for observing regions that completely overlap, partially overlap or overlap not at all; and for observing strategies that differ greatly. We apply the methods to check the consistency (internal and external) of the MSAM92, MSAM94 and Saskatoon Ring datasets. From comparing the two MSAM datasets, we find that the most probable level of contamination is 12%, with no contamination only 1.05 times less probable, and 100% contamination strongly ruled out at over 2 X 10^5 times less probable. From comparing the 1992 MSAM flight with the Saskatoon data we find the most probable level of contamination to be 50%, with no contamination only 1.6 times less probable and 100% contamination 13 times less probable. [Truncated]Comment: LaTeX, 16 pages which include 16 figures, submitted to Phys. Rev.
    • 

    corecore