5 research outputs found

    41SM195A, The Browning Site

    Get PDF
    A surface collection of early 19 \u27 century historic sherds led to archaeological investigations in 2002 and 2003 at the Browning site (41SM195A) in eastern Smith County, Texas. My interest was whetted by mention in the original land abstract that the property had once been deeded to the Cherokee Indians. In all, a total of 6.5 cubic meters of archaeological deposits was excavated at the site, including 22 shovel tests and 10 1 x 1 m test units, and fine-screen and flotation samples were taken from a prehistoric midden deposit identified during the work. As a result, 1075 prehistoric and historic artifacts were recovered, along with new information about Woodland period archaeology in this part of East Texas. The initial shovel tests found, in addition to the historic component, a buried midden with evidence of Woodland period occupation. Based on the excavations, the midden covered approximately 500 square meters. The 19th century historic artifacts were found in the upper sediment zone, a brown sandy loam that was mostly gravel- free) covering the midden. The buried midden was a dark yellowish-brown gravelly loam that contained prehistoric pottery, animal bone, charred wood and nutshells, lithic materials, including lithic debris, flake tools, arrow and dart points, and ground stone tools. A calibrated radiocarbon date of A.D. 625 to 880, with a calibrated intercept of A.D. 685, was obtained on charred nutshell from 40-50 em bs in the midden zone. A series of Oxidizable Carbon Ratio (OCR) dates from the midden indicate that the midden began to from about A.D. 147, with dates of A.D. 357-815 from the main part of the midden, indicating when the Browning site was most intensively occupied in prehistoric times

    The Courts and Public School Finance: Judge-Made Centralization and Economic Research

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Canada

    No full text
    corecore