382 research outputs found

    Dynamics of multi-cored magnetic structures in the quiet Sun

    Full text link
    We report on the dynamical interaction of quiet-Sun magnetic fields and granular convection in the solar photosphere as seen by \textsc{Sunrise}. We use high spatial resolution (0\farcs 15--0\farcs 18) and temporal cadence (33 s) spectropolarimetric Imaging Magnetograph eXperiment data, together with simultaneous CN and Ca\,\textsc{ii}\,H filtergrams from \textsc{Sunrise} Filter Imager. We apply the SIR inversion code to the polarimetric data in order to infer the line of sight velocity and vector magnetic field in the photosphere. The analysis reveals bundles of individual flux tubes evolving as a single entity during the entire 23 minute data set. The group shares a common canopy in the upper photospheric layers, while the individual tubes continually intensify, fragment and merge in the same way that chains of bright points in photometric observations have been reported to do. The evolution of the tube cores are driven by the local granular convection flows. They intensify when they are "compressed" by surrounding granules and split when they are "squeezed" between two moving granules. The resulting fragments are usually later regrouped in intergranular lanes by the granular flows. The continual intensification, fragmentation and coalescence of flux results in magnetic field oscillations of the global entity. From the observations we conclude that the magnetic field oscillations first reported by \citet{2011ApJ...730L..37M} correspond to the forcing by granular motions and not to characteristic oscillatory modes of thin flux tubes.Comment: 12 pages, 7 figures. Accepted in ApJ. Animation 1 can be downloaded from: http://spg.iaa.es/download

    The formation and disintegration of magnetic bright points observed by Sunrise/IMaX

    Full text link
    The evolution of the physical parameters of magnetic bright points (MBPs) located in the quiet Sun (mainly in the interwork) during their lifetime is studied. First we concentrate on the detailed description of the magnetic field evolution of three MBPs. This reveals that individual features follow different, generally complex, and rather dynamic scenarios of evolution. Next we apply statistical methods on roughly 200 observed MBP evolutionary tracks. MBPs are found to be formed by the strengthening of an equipartition field patch, which initially exhibits a moderate downflow. During the evolution, strong downdrafts with an average velocity of 2.4 km/s set in. These flows, taken together with the concurrent strengthening of the field, suggest that we are witnessing the occurrence of convective collapses in these features, although only 30% of them reach kG field strengths. This fraction might turn out to be larger when the new 4 m class solar telescopes are operational as observations of MBPs with current state of the art instrumentation could still be suffering from resolution limitations. Finally, when the bright point disappears (although the magnetic field often continues to exist) the magnetic field strength has dropped to the equipartition level and is generally somewhat weaker than at the beginning of the MBP's evolution. Noteworthy is that in about 10% of the cases we observe in the vicinity of the downflows small-scale strong (exceeding 2 km/s) intergranular upflows related spatially and temporally to these downflows.Comment: 19 pages, 13 figures; final version published in "The Astrophysical Journal

    The history of a quiet-Sun magnetic element revealed by IMaX/SUNRISE

    Full text link
    Isolated flux tubes are considered to be fundamental magnetic building blocks of the solar photosphere. Their formation is usually attributed to the concentration of magnetic field to kG strengths by the convective collapse mechanism. However, the small size of the magnetic elements in quiet-Sun areas has prevented this scenario from being studied in fully resolved structures. Here we report on the formation and subsequent evolution of one such photospheric magnetic flux tube, observed in the quiet Sun with unprecedented spatial resolution (0\farcs 15 - 0\farcs 18) and high temporal cadence (33 s). The observations were acquired by the Imaging Magnetograph Experiment (IMaX) aboard the \textsc{Sunrise} balloon-borne solar observatory. The equipartition field strength magnetic element is the result of the merging of several same polarity magnetic flux patches, including a footpoint of a previously emerged loop. The magnetic structure is then further intensified to kG field strengths by convective collapse. The fine structure found within the flux concentration reveals that the scenario is more complex than can be described by a thin flux tube model with bright points and downflow plumes being established near the edges of the kG magnetic feature. We also observe a daisy-like alignment of surrounding granules and a long-lived inflow towards the magnetic feature. After a subsequent weakening process, the field is again intensified to kG strengths. The area of the magnetic feature is seen to change in anti-phase with the field strength, while the brightness of the bright points and the speed of the downflows varies in phase. We also find a relation between the brightness of the bright point and the presence of upflows within it.Comment: 13 pages. Accepted in ApJ. Animation 1 can be viewed and downloaded from: http://spg.iaa.es/downloads.as

    Vector spectropolarimetry of dark-cored penumbral filaments with Hinode

    Full text link
    We present spectropolarimetric measurements of dark-cored penumbral filaments taken with Hinode at a resolution of 0.3". Our observations demonstrate that dark-cored filaments are more prominent in polarized light than in continuum intensity. Far from disk center, the Stokes profiles emerging from these structures are very asymmetric and show evidence for magnetic fields of different inclinations along the line of sight, together with strong Evershed flows of at least 6-7 km/s. In sunspots closer to disk center, dark-cored penumbral filaments exhibit regular Stokes profiles with little asymmetries due to the vanishing line-of-sight component of the horizontal Evershed flow. An inversion of the observed spectra indicates that the magnetic field is weaker and more inclined in the dark cores as compared with the surrounding bright structures. This is compatible with the idea that dark-cored filaments are the manifestation of flux tubes carrying hot Evershed flows.Comment: Accepted for publication in ApJ Letters. Use the Postscript version for high quality figure

    Strategy for the inversion of Hinode spectropolarimetric measurements in the quiet Sun

    Full text link
    In this paper we propose an inversion strategy for the analysis of spectropolarimetric measurements taken by {\em Hinode} in the quiet Sun. The spectropolarimeter of the Solar Optical Telescope aboard {\em Hinode} records the Stokes spectra of the \ion{Fe}{i} line pair at 630.2 nm with unprecendented angular resolution, high spectral resolution, and high sensitivity. We discuss the need to consider a {\em local} stray-light contamination to account for the effects of telescope diffraction. The strategy is applied to observations of a wide quiet Sun area at disk center. Using these data we examine the influence of noise and initial guess models in the inversion results. Our analysis yields the distributions of magnetic field strengths and stray-light factors. They show that quiet Sun internetwork regions consist mainly of hG fields with stray-light contaminations of about 0.8.Comment: To appear in Publications of the Astronomical Society of Japan, 8 pages, 10 figure

    Quiet Sun internetwork magnetic fields from the inversion of Hinode measurements

    Full text link
    We analyze Fe I 630 nm observations of the quiet Sun at disk center taken with the spectropolarimeter of the Solar Optical Telescope aboard the Hinode satellite. A significant fraction of the scanned area, including granules, turns out to be covered by magnetic fields. We derive field strength and inclination probability density functions from a Milne-Eddington inversion of the observed Stokes profiles. They show that the internetwork consists of very inclined, hG fields. As expected, network areas exhibit a predominance of kG field concentrations. The high spatial resolution of Hinode's spectropolarimetric measurements brings to an agreement the results obtained from the analysis of visible and near-infrared lines.Comment: To appear in ApJ letter

    Detection of vortex tubes in solar granulation from observations with Sunrise

    Full text link
    We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory Sunrise. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that these `granular lanes' are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface.Comment: Astrophysical Journal Letters: Sunrise Special Issue, reveived 2010 June 16; accepted 2010 August

    Kinematics of Magnetic Bright Features in the Solar Photosphere

    Full text link
    Convective flows are known as the prime means of transporting magnetic fields on the solar surface. Thus, small magnetic structures are good tracers of the turbulent flows. We study the migration and dispersal of magnetic bright features (MBFs) in intergranular areas observed at high spatial resolution with Sunrise/IMaX. We describe the flux dispersal of individual MBFs as a diffusion process whose parameters are computed for various areas in the quiet Sun and the vicinity of active regions from seeing-free data. We find that magnetic concentrations are best described as random walkers close to network areas (diffusion index, gamma=1.0), travelers with constant speeds over a supergranule (gamma=1.9-2.0), and decelerating movers in the vicinity of flux emergence and/or within active regions (gamma=1.4-1.5). The three types of regions host MBFs with mean diffusion coefficients of 130 km^2/s, 80-90 km^2/s, and 25-70 km^2/s, respectively. The MBFs in these three types of regions are found to display a distinct kinematic behavior at a confidence level in excess of 95%.Comment: 8 pages, 4 figure
    • …
    corecore